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Abstract

We present a model of industry equilibrium to study the coexistence of open-source
and proprietary firms. Two novel aspects of the model are (i) participation in open
source arises as the optimal decision of profit-maximizing firms, and (ii) open-source
and proprietary firms may (or may not) coexist in equilibrium. Firms decide their
type and investment in R&D, and sell packages composed of a primary good and a
complementary private good. Open-source firms share their technological advances
on the primary good, whereas proprietary firms keep their innovations private. The
main contribution of the paper is to determine conditions under which open-source and
proprietary firms coexist in equilibrium. Interestingly, this equilibrium is characterized
by an asymmetric market structure, with few large proprietary firms and many small
open-source firms. We also study the limiting economy and present conditions under
which large numbers favor cooperation in R&D.
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1. Introduction

Collaboration in research enhances the chances of discovery and creation, not only
for scientific discoveries, but also for commercial innovations. However, innovators face
incentives to limit competitors’ access to their innovations. According to the traditional
view in the economics of innovation, innovators innovate because doing so allows them
to obtain a monopolistic advantage over their competitors. Therefore, innovators should
prevent others from gaining access to their discoveries, either by keeping them secret or
by protecting them with patents.

This view contrasts with the free/open-source development model, in which inno-
vators voluntarily choose to disclose their technological improvements so that other
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innovators can copy, use, and improve them free of charge. But if everybody has access
to the same technologies, how do developers benefit from collaboration? What do they
receive in exchange for renouncing their monopolistic advantages?

The answer is that open-source developers may benefit from participating in open-
source projects by selling goods and services that are complementary to the open-source
good. For example, IBM announced in 2001 that it was going to invest over 1 billion
dollars in Linux, and today provides support for over 500 software products running on
Linux, and has more than 15,000 Linux-related customers worldwide.1

Still, questions remain regarding what determines the choice of development model
for profit-maximizing firms, why open-source and proprietary firms coexist in the same
markets, and the implications of coexistence on market structure and investment incen-
tives. Existing literature has yet to address these questions, which are the main focus
of this paper.

We present a model of industry equilibrium with endogenous technology sharing.
Firms sell packages composed of a primary good, such as software, and a complemen-
tary good, such as a smartphone, tablet PC, or support and training services. Firms
choose their development model (open-source or proprietary), how much to invest in
product development, and the price of their products. Open-source firms share their
improvements to the main product, whereas proprietary firms, develop their products
independently of other firms. Consumers value the quality of both goods (vertical
differentiation) but also have idiosyncratic tastes for the products of different firms
(horizontal differentiation).

We find the equilibrium may have both types of firms or only open-source firms. In
the equilibrium with coexistence, the market structure is asymmetric, with few large
proprietary firms and many small open-source firms. This finding is consistent with
the observations of recent surveys. Seppä (2006) compares both types of firms and
finds open-source firms tend to be smaller than proprietary firms. Bonaccorsi and Rossi
(2004) show the most important motive for firms to participate in open-source projects
is that participation allows small firms to innovate.

The equilibrium depends on the resolution of a trade-off between free-riding and
collaboration, which is governed by a parameter measuring the degree of public good of
the investment in R&D (i.e., the effect of total vs. individual contributions on quality).
When open-source firms invest in R&D, they increase quality for all firms in the project.
As a consequence, open-source firms are able to appropriate a smaller fraction of their
investment, in comparison with proprietary firms. Nevertheless, open-source firms share
their advances on the primary good, which means that even though each firm may
individually invest less than a proprietary firm, the total investment of all firms in the
project may be larger than the investment of a proprietary firm.

When the degree of public good of the investment in R&D is high, free-riding is
important, which leads to lower individual investments for open-source firms. As a con-
sequence, proprietary firms have an advantage over open-source firms in terms of market

1See http://www.ibm.com/linux/ (accessed May 15, 2012).
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share and price. On the other hand, open-source firms benefit from lower development
costs. Therefore, both types of firms coexist in equilibrium: some firms choose to be
proprietary, have a high investment in R&D, and benefit from high market shares and
prices, and other firms choose to be open source and benefit from lower development
costs.

For intermediate degrees of public good of the investment in R&D, free-riding be-
comes less important, and the difference in investment between open-source and pro-
prietary firms becomes smaller. If the market-share advantage of proprietary firms is
not large enough to compensate for the higher development costs, all firms choose the
open-source development model. Nevertheless, a proprietary firm would invest more
and produce a higher-quality product than open-source firms, so open-source prevents
the entry of a higher-quality product.

Finally, when the degree of public good of the investment in R&D is low, the pos-
itive effects of collaboration are stronger than the negative effects of free-riding, and
open-source firms have higher (total) investment than proprietary firms (individual in-
vestments are similar, but open-source firms share their investments). In this case, all
firms choose the open-source development model to benefit from higher market shares
and lower development costs than proprietary firms.

In the market equilibrium, welfare is suboptimal because of the public-good problem
in open source and the duplication of effort of proprietary firms. In section 5, we show
that a subsidy to open-source development can improve welfare not only because it
increases the investment in R&D, but also because it encourages commercial firms to
participate in open source, thereby enhancing collaboration.

The baseline model assumes symmetric consumer preferences for open-source and
proprietary products. However, given that open-source packages are based on the same
primary good, open-source products are likely to be more similar than the products of
proprietary firms. In section 6, we modify the baseline model to allow for a higher cross-
price elasticity between open-source products. We find the main result of the paper still
holds: when open-source and proprietary firms coexist, the market share of proprietary
firms is higher than that of open-source firms. However, in this case, we also find that if
the substitution between open-source products is large enough, equilibria exist in which
all firms choose the proprietary development model.

We also study investment incentives and market structure under free entry. When
entry costs are small, the number of firms is large and the market becomes monopolis-
tically competitive. The equilibrium of the limiting economy depends on the limit of
the ratio of open-source and proprietary firms’ investments in R&D. Even though free-
riding becomes more important as the number of firms increases, collaboration becomes
more important, too, so either type of firm may have an advantage.

In the basic model, we find that when the degree of public good of the investment is at
its maximum level (all investment is shared), the effects of free-riding and collaboration
are perfectly balanced, and the equilibrium of the limiting economy has both types of
firms. In this case, as the degree of horizontal differentiation decreases, the aggregate
market share of open-source firms decreases, but the proportion of open-source firms
in the total of firms increases. Thus, the equilibrium has fewer but bigger proprietary
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firms. On the other hand, when the degree of public good of the investment is less than
maximal, collaboration dominates free-riding and all firms become open source. Thus
we find conditions under which large numbers favor cooperation; that is, open source
does not disappear as the number of firms grows.

Finally, in the model with lower differentiation for open-source firms, we find that if
the difference in the degree of substitution between open-source and proprietary firms
is large enough (so that it compensates for the positive effects of collaboration), the
limiting economy has equilibria with only proprietary firms.

The model and the results are important for a variety of reasons. First, we endo-
genize the decision of for-profit firms to participate in open-source projects, and the
equilibrium industry structure under coexistence. Second, we show market forces and
incentives may lead to an asymmetric market structure, even though all firms are ex-
ante symmetric. Third, we obtain conditions under which open source can overcome
free-riding and produce a good of high quality, even without coordination of individual
efforts. Finally, the model allows an analysis of welfare and optimal policy.

Even though our model is specially designed to analyze open source, it has wider
applicability. In particular, it can be used to analyze industries in which firms cooper-
ating in R&D coexist with firms developing technologies on their own. In section 1.1,
we discuss how this paper relates with the literature of cooperation in R&D.

The main contribution of this paper is a tractable model of competition between
profit-maximizing open-source and proprietary firms. As such, the model captures the
main ingredient shaping the decision to share technologies with rivals or not: the trade-
off between free-riding (appropriability) and collaboration (duplication of effort). We
believe our paper is an important first step in the analysis of the behavior of profit-
maximizing open-source firms.

In section 1.1, we present a detailed analysis of the literature. In section 2, we
introduce the basic model, which we solve in section 3. In section 4, we study the
effects of free entry, and the equilibrium of the limiting economy. In section 5, we
present an analysis of social welfare and optimal government policy. In section 6, we
study a model with lower differentiation between open-source products. Finally, in
section 7, we discuss the main implications of our analysis and present directions for
further research.

1.1. Related literature

The first papers on open source were concerned with explaining why individual
developers contribute to open-source projects, apparently for free (see Lerner and Tirole,
2005; von Krogh and von Hippel, 2006, for excellent surveys). The initial answers were
altruism, personal gratification, peer recognition, and career concerns.

Lerner and Tirole (2001, 2002, 2005) identify directions for further research. Some
of the questions related to the present paper are as follows: (i) What are the incentives
of for-profit firms to participate in open source? (ii) What development model provides
higher quality and welfare? (iii) How does the competitive environment influence open
source? More importantly, these authors remark that direct competition between pro-
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prietary and open-source firms has received little attention. For more recent surveys,
see Maurer and Scotchmer (2006) and Fershtman and Gandal (2011).

Early papers addressing competition between the two paradigms studied duopoly
models of a profit-maximizing proprietary firm and a community of not-for-profit/non-
strategic open-source developers, selling at zero price (Mustonen, 2003; Bitzer, 2004;
Gaudeul, 2007; Casadesus-Masanell and Ghemawat, 2006; Economides and Katsamakas,
2006). In these papers, however, open-source firms have no profits, and the choice
of development model is exogenous. Introducing profit-seeking open-source firms is
important because doing so allows us to analyze the incentives for investing in R&D
and the decision to become open source.

Later papers introduced profit-maximizing open-source firms (Johnson, 2002; Henkel,
2004; Bessen, 2006; Schmidtke, 2006; Haruvy, Sethi, and Zhou, 2008; Casadesus-Masanell
and Llanes, 2011) but assumed an exogenous market structure. Other papers study
industry dynamics when open-source and proprietary firms compete, but assume open-
source projects are formed by altruistic contributors (Athey and Ellison, 2010) or by
non-strategic firms (Arora and Bokhari, 2007). Likewise, recent papers show the orga-
nizational structure of open-source projects may lead to better development incentives
than the organizational structure of proprietary firms (Johnson, 2006; Polanski, 2007;
Niedermayer, 2007), but study each model in isolation and do not study direct compe-
tition between the two paradigms.

The main contributions of our paper are (i) to analyze an oligopoly model with
direct competition between for-profit open-source and proprietary firms, in which (ii) the
choice of development model is endogenous, and (iii) the market structure is determined
endogenously as a result of firms’ decisions. In this sense, the closest papers to ours are
Jansen (2009) and von Engelhardt (2010).

Jansen (2009) studies a duopoly model with Cournot competition, in which firms
may choose to share their knowledge to signal a low-cost position, thereby reducing
competition. In contrast with Jansen, we study an oligopoly with n firms, consider
Bertrand competition, and focus on the effects of technology sharing on investment
incentives. Von Engelhardt (2010) studies a Cournot oligopoly in which firms may invest
in open-source software, proprietary software, or both. The focus of von Engelhardt’s
paper differs from ours, because he is more interested in studying the effects of the type
of open-source license on the equilibrium. For most of his analysis, von Engelhardt
focuses on studying symmetric equilibria (i.e., all firms are of the same type), but he
also presents simulation results that show that under coexistence, proprietary firms
are larger than open-source firms. We provide theoretical results that formalize these
findings.

Finally, our paper is also related to the literature of cooperation in R&D and research
joint ventures. A first strand of papers analyzed the effects of sharing R&D on the
incentives to perform such investments (D’Aspremont and Jacquemin, 1988; Kamien,
Muller, and Zang, 1992; Suzumura, 1992). In particular, Kamien, Muller, and Zang
show free-riding incentives are so strong that a joint venture in which firms share R&D
but do not coordinate their R&D levels has a lower total investment than the individual
investment of each of these firms when there is no cooperation in R&D. We show this
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result can be reversed when firms profit from the sale of complementary private goods.
A second strand of papers analyzed the endogenous formation of research coalitions.

Bloch (1995) presents a model in which firms decide sequentially whether to join the
association, and compete in quantities after forming associations. In equilibrium, two
associations are formed. However, firms do not decide their optimal investments in
R&D, so this model cannot be used to analyze the free-riding incentives created by
association. Poyago-Theotoky (1995) and Yi and Shin (2000) assume firms set their
R&D levels cooperatively after associating, and show that firms in the joint venture
invest more in R&D, and have higher profits than outsiders. We show this result is
reversed when firms do not coordinate their R&D levels.

A third strand of papers analyzed the endogenous determination of spillovers among
firms conducting R&D. Katsoulacos and Ulph (1998) show that firms selling comple-
mentary goods may choose maximal spillovers (i.e., decide to be open source), even
when they make their decisions non-cooperatively. However, firms are not competing
in the same industry. In our model, firms are direct competitors in the markets for the
primary and complementary goods. Amir, Evstigneev, and Wooders (2003) present a
duopoly model in which firms cooperatively set their R&D levels and the strength of
the spillover. In their model, firms choose maximal spillovers, because they make their
decisions cooperatively.

As can be seen, the literature of cooperation in R&D is an important precedent
for our paper. Nevertheless, to the best of our knowledge, previous papers have not
analyzed the case of endogenous formation of a coalition cooperating in R&D, when
R&D levels are determined non-cooperatively. In particular, our contribution to this
literature is the result that the equilibrium in which some firms decide to cooperate
and others do not is characterized by an asymmetric market structure, in which firms
cooperating in R&D have smaller market shares.

2. The model

2.1. Technology

The model has n firms selling packages composed of a primary good (which is poten-
tially open-source) and a complementary private good. This assumption fits particularly
well cases in which the complementary good is essential (or almost essential) for the
primary good, such as embedded systems in electronic devices (mobile phones, DVD
and MP3 players, smartphones, tablet PCs, medical equipment, printers, etc.), server
software, enterprise solutions, IT technical support and consulting services.

Firms may improve the quality of their packages by investing in R&D. Let xi be the
investment in R&D of firm i. The cost of investment is c xi, which is an endogenously
determined fixed cost. The marginal cost of producing packages is zero.

Firms may choose to develop their primary goods under the open-source or pro-
prietary development models, which we denote as O and P, respectively. O firms
collaborate in the development of the primary good, and quality is given by qi =
α ln(Σi∈O xi) + (1 − α) ln(xi), where Σi∈O xi is the sum of investments of O firms,
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and α ∈ [0, 1] represents the degree of public good of the investment in R&D. P firms
invest individually, and quality is given by qi = ln(xi).

Our specification for the quality of O packages implies O firms benefit more from
their own investment than from the investment of other firms in the open-source project.
Several reasons motivate this assumption. First, O firms have incentives to contribute
code to sections of the program that benefit them more than other firms. Second,
even though firms are compelled to share their improvements to the primary good, the
availability of these improvements to other firms may be delayed. Third, a learning
effect may be present through which firms gain valuable knowledge and expertise when
they increase their participation in the open-source project, and thus are able to offer
a better complementary good.

Finally, α may also indicate the degree of restrictiveness of the open-source license.
Restrictive licenses, such as the General Public License, force developers to share their
contributions to the code if they distribute the modified program. Permissive licenses,
such as the BSD License, on the other hand, allow developers to keep their contributions
private. Therefore, as α increases, the open-source license becomes more restrictive and
a higher fraction of the source code is shared.2

2.2. Preferences

A continuum of consumers exists. Each consumer has income y and buys one pack-
age. Consumer j’s indirect utility from consuming package i is

vij = qi + y − pi + εij , (1)

where qi is the quality of the package of firm i, pi is its price, and εij is an idiosyn-
cratic shock (unobservable by firms) representing the heterogeneity in tastes between
consumers. This specification for preferences allows for vertical (qi) and horizontal (εij)
product differentiation.

Each consumer observes prices and qualities and then chooses the package that yields
the highest indirect utility. The total mass of consumers is 1, so aggregate demands are
equivalent to market shares. To obtain closed-form solutions for the demands, we make
the following assumption, which corresponds to the multinomial logit model (McFadden,
1974)3:

Assumption 1. The idiosyncratic taste shocks εij are i.i.d. according to the double
exponential distribution:

Pr(εij ≤ z) = exp (− exp (−ν − δ z))

where ν is Euler’s constant (ν ≈ 0.5772) and δ is a positive constant.

2We are grateful to a referee for suggesting this interpretation.
3The logit is a common model in discrete choice theory (Ben-Akiva and Lerman, 1985), and has been

widely used in econometric applications (see Train, McFadden, and Ben-Akiva, 1987, and references
therein), in marketing (McFadden, 1986), and in theoretical work (see Besanko, Perry, and Spady,
1990; Anderson and de Palma, 1992; Anderson and Leruth, 1993). See Anderson, de Palma, and Thisse
(1992) for a detailed presentation of its main properties.
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Under Assumption 1, the market share (demand) of firm i is

si =
exp (δ (qi − pi))∑

exp (δ (qi − pi))
. (2)

The taste shocks have zero mean and variance π2/(6 δ2). As δ increases, consumers
become less differentiated and the degree of horizontal differentiation among varieties
decreases. To guarantee the existence of a symmetric equilibrium, we need to assume
enough horizontal differentiation exists relative to vertical differentiation (Yarrow, 1989;
Anderson, de Palma, and Thisse, 1992). In the proof of Proposition 2, we show a
sufficient condition is δ ≤ 1, which we assume throughout the paper.

2.3. Game and equilibrium concept

The model is a two-stage non-cooperative game. The players are the n firms. In
the first stage, firms decide their type (O or P), and in the second stage, they choose
investment and prices (xi, pi).

Given investments (quality) and prices, each consumer chooses her optimal package.
These decisions are summarized by consumer demands (si) and embedded into the firms’
payoffs: πi = si pi − c xi.

The equilibrium concept is subgame perfect equilibrium, and we focus on symmetric
equilibria; that is, all firms deciding to be of the same type in the first stage play the
same equilibrium strategy in the second stage.

3. Solution of the model

3.1. Second stage

Let no be the number of firms deciding to be O in the first stage. In the second
stage, firms choose pi and xi to maximize πi = si pi− c xi, taking as given the decisions
of other firms. Working with the first-order conditions and imposing symmetry, we
obtain the optimal price:

pi =
1

δ (1− si)
, (3)

and the optimal investment in R&D for O and P firms:

xo =
1

c
so

(
1− α no−1

no(1−so)

)
, (4)

xp =
1

c
sp. (5)

The term inside the parenthesis of (4) represents free-riding. If so = sp, O firms
would invest less than P firms because they can appropriate a smaller fraction of their
investment.

From (2), we can get the ratio of market shares so/sp. Introducing equations (3) to
(5), taking logs and rearranging terms, we obtain

(1−δ) ln

(
so
sp

)
+

1

1−so
− 1

1−sp
= δ ln

(
1− α no−1

no(1−so)

)
+ α δ ln (no). (6)
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Equation (6) shows the difference in market shares depends on the resolution of the
conflict between free-riding and collaboration. The left-hand side is increasing in so
and decreasing in sp, so the difference in market shares will increase if the right-hand
side does. The first term on the right-hand side arises from the difference in individual
investments (free-riding). The second term arises because individual investments in
open source are multiplied by the number of O firms (collaboration).

The trade-off between free-riding and collaboration is determined by α and no.
On one hand, as α increases, the degree of public good of the investment in R&D
increases, and thus the individual investments of O firms (xo) decrease. On the other
hand, as α increases, the joint investment of O firms (no xo) has a greater effect on
quality. Likewise, as no increases, the public-good problem becomes more important
(more firms are sharing), but collaboration also becomes more important (more firms
are collaborating). Moreover, α and no are complementary. The effects of a higher no
on free-riding and collaboration become more important when α is higher.

The second-stage equilibrium is completely characterized by (6) and the condition
that the sum of the market shares is equal to 1:

no so + (n− no)sp = 1. (7)

Proposition 1. A second-stage equilibrium exists and is unique. Given no, the equilib-
rium market shares solve (6) and (7).

All proofs are relegated to the Appendix. In what follows, we study the comparative
statics of the second-stage equilibrium. In Lemma 1, we present a simple condition to
determine which type of firm will have higher market share (quality and price).

Lemma 1. sp > so if α > α̂(no, n), and sp < so if α < α̂(no, n), where α̂(no, n) is
increasing in no and n and solves:

α
nαo

nαo − 1

no−1

no
=
n− 1

n
.

The comparison of prices and quality is equivalent to the comparison of market
shares: if so > sp, then po > pp and qo > qp, and vice versa. Lemma 1 provides an
important result: as no or n increase, the region of parameters for which O firms have
higher market share (quality and price) than P firms increases.

Lemmas 2 and 3 analyze the effects of changes in α and δ on so. The effects on sp
have the opposite sign.

Lemma 2. A threshold αs ∈ (0, α̂) exists such that so is increasing in α if α < αs, and
decreasing in α if α > αs.

Lemma 2 implies the graph of so with respect to α (the degree of public good of
the investment) is hump-shaped. When α is close to zero, the investment of O firms
is mostly private, and individual investments are close to the investments of P firms.
Therefore, the positive effects of collaboration are more important than the negative
effects of free-riding. For high values of α, free-riding becomes more important and the
difference in individual investments between O and P firms increases. Therefore, for
large α, free-riding dominates collaboration.
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Lemma 3. so is increasing in δ if α < α̂(no, n), and decreasing in δ if α > α̂(no, n).

Lemma 3 shows the effect of a higher δ depends on the value of α. When δ increases,
vertical differentiation becomes more important relative to horizontal differentiation. As
a consequence, investing in R&D has a greater effect on demand, which benefits firms
with higher-quality products. If α < α̂, O firms have higher-quality products; therefore,
their market share increases relative to the market share of P firms. The opposite
happens when α > α̂.

3.2. First stage

In the first stage of the game, firms choose to be O or P, taking as given the decisions
of the rest of the firms and forecasting their equilibrium payoffs in the second stage. Let
π(no) be the second-stage equilibrium payoffs when no firms decide to be O. Replacing
the second-stage equilibrium values of prices and investments for both types of firms,
we obtain

πo(no) =
so

1− so

(
1

δ
− (1− so) + α

no−1

no

)
, (8)

πp(no) =
sp

1− sp

(
1

δ
− (1− sp)

)
, (9)

where so = so(no) and sp = sp(no) are the second-stage equilibrium market shares.
Equilibrium profits are always positive, given that α, δ, so, and sp are all between 0
and 1. Comparing equations (8) and (9), we can see collaboration has a direct effect on
profits (third term inside the parenthesis of equation 8): if so = sp, the investment of
O firms is lower than the investment of P firms (xo = xp/no), and this effect becomes
larger as α increases.

A number no of firms in the open-source project is an equilibrium if and only if
πo(no) ≥ πp(no−1) and πp(no) ≥ πo(no+1). D’Aspremont, Jacquemin, Gabszewicz, and
Weymark (1983) called these conditions internally stable and externally stable coalition
conditions. The first inequality says firms deciding to be O cannot gain by deviating
and becoming P. The second inequality is a similar condition on the decision of being P.
Using the function f(no) = πo(no)− πp(no−1), equilibrium conditions can be restated
as f(no) ≥ 0 and f(no + 1) ≤ 0.

The equilibrium may be such that both types of firms coexist (interior equilibrium)
or all firms choose to be of the same type. no = 0 is always an equilibrium, so we focus
on equilibria with no ≥ 1. For no = 1 to be an equilibrium, we need f(2) ≤ 0. Likewise,
for no = n to be an equilibrium, we need f(n) ≥ 0.

Figure 1 shows an example of the f(no) schedule when α = 1, δ = 0.7, and n = 10.
In this case, six firms are open source in equilibrium.

When firms choose between O or P, they compare the relative benefits of collabo-
ration and secrecy. Two elements are associated with this trade-off. On the one hand,
free-riding and collaboration affect the equilibrium market shares, as analyzed in section
3.1. On the other hand, O firms have a lower investment cost. Being P will be more
profitable than being O only if free-riding is strong enough to overcome the positive
effects of collaboration. Proposition 2 characterizes the equilibrium of the game.
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Figure 1: Equilibrium number of firms in open source.

Proposition 2. A subgame perfect equilibrium exists. Given n > 3 and δ, thresholds
0 < α < ᾱ < 1 exist such that:

(i) If α > ᾱ, both types of firms coexist and P firms have higher quality and market
share than O firms.

(ii) If α < α ≤ ᾱ, all firms decide to be O, but a P firm would have higher quality and
market share.

(iii) If α ≤ α, all firms decide to be O, and a P firm would have lower quality and
market share.

Proposition 2 shows three equilibrium regions exist. When α is large, the degree of
public good of the investment in R&D is high, and free-riding is important, which leads
to low individual investments for O firms (see Lemma 2). As a consequence, P firms
have an advantage over O firms in terms of market share and price. On the other hand,
O firms benefit from lower development costs. Therefore, there is room for both types
of firms in equilibrium: some firms choose to be P and have a high investment in R&D
to benefit from high market shares and prices, and other firms choose to be O to benefit
from low development costs. For intermediate values of α, the market-share advantage
of P firms is not enough to compensate the higher development costs. Therefore, all
firms decide to be O, but a P firm would produce a good of higher quality. In this
case, open source is preventing the entry of a product of better quality. Finally, when
α is small, the positive effects of collaboration on investment incentives are stronger
than the negative effects of free-riding (see Lemma 2), and the total investment in the
open-source project is larger than the investment of a P firm. Basically, when alpha
is very close to 0, but positive, the individual investments of O and P firms are very
similar because very little is shared. In this case, firms benefit from having some level
of cooperation, and that is why all firms choose to be O.

Figure 2 shows the equilibrium regions for different values of α and n, when δ = 1.
The area corresponding to equilibria with coexistence first increases but then decreases
with n, which means large numbers favor cooperation, even without coordination of
individual investments. In the following section, we elaborate on this result.
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Figure 2: Equilibrium regions.

In the basic model, no equilibrium exists with only P firms. O and P firms are
symmetric in all aspects, except for the fact that O firms share their investments in
R&D. In section 6, we introduce an additional difference: given that O firms base
their packages on the same primary good, O products tend to be more similar than P
products. We show that if the price elasticity of O products is not large enough, strong
competition leads to low prices for open-source packages, in which case the open-source
model becomes less desirable and an equilibrium with only P firms is possible.

Likewise, results may change if O firms can direct their investment towards the
shared code or towards a directly appropriable complementary good, such as a propri-
etary application. If the two types of investment are complementary and O firms have
low incentives to invest in the primary good, investment in the complementary good
will be low as well, in which case an equilibrium with only P firms may exist. We believe
this extension is an interesting direction for further research.

4. Entry

In previous sections, we assumed a fixed number of firms. Implicitly, we were as-
suming an exogenous cost of entry, in addition to the endogenous cost of developing the
primary good. Concretely, suppose firms decide to enter the industry before deciding
to become O or P. As the cost of entry decreases, the number of firms in equilibrium
increases and we move along the curve of Figure 2.

The fixed cost of entry may be a consequence of entry barriers in the market of
complementary goods. The market of smartphones, for example, has high barriers to
entry. Even though the Android operating system is free for firms wanting to develop
a smartphone, this industry has few producers, because developing the hardware that
goes with the software is expensive. In other markets of complementary goods, however,
the cost of entry is small and a large number of firms is present. For example, the cost of
entering the market of software training, support, and customization is relatively small,
and a large number of independent software programmers provide such services. In fact,
the open-source movement started precisely among these independent programmers.
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For this reason, studying the case of a small cost of entry is of interest.4 In our
model, as the cost of entry goes to zero, the number of firms in the industry goes to
infinity and the industry becomes monopolistically competitive. As Besanko, Perry, and
Spady (1990) show in their analysis of the logit model of monopolistic competition, price
converges to a constant margin over marginal cost, which depends on the substitution
parameter δ. The key assumption is horizontal differentiation, which allows any firm
to enter and supply a differentiated product (Dixit and Stiglitz, 1977).5 Proposition 3
characterizes the equilibrium of the limiting economy.

Proposition 3. A subgame perfect equilibrium of the limiting economy (n→∞) exists
and is unique. The equilibrium is characterized as follows:

(i) If α < 1, all firms decide to be O.

(ii) If α = 1, both types of firms coexist, the ratio of market shares (so/sp) is 1 − δ,
the aggregate market share of O firms (no so) is 1− (1− δ)

1−δ
δ and the proportion

of O firms (no/n) is 1−(1−δ)(1−δ)/δ
δ−(1−δ)(1−δ)/δ .

Proposition 3 shows the incentives to participate and to invest in an open-source
project do not disappear when the number of firms goes to infinity. This result is some-
what surprising because as no increases, free-riding intensifies and individual incentives
to invest in open source decrease. In the limit, we would expect the incentives to in-
vest in open source to disappear completely. However, as no increases, collaboration
between O firms also intensifies (individual investments of O firms are multiplied by a
larger factor), which compensates for the negative effects of free-riding.

As n → ∞, investment in R&D and market share converge to zero for both O and
P firms, as firms become infinitesimally small. However, studying whether investments
and market shares converge faster to zero for O or P firms (i.e., determining the limits
of the ratios of investments and market shares) is interesting because doing so allows
us to determine if large numbers favor cooperation in R&D.

As no →∞, the ratio of individual investments (xo/xp) converges to 1−α. When α
is close to 1, individual incentives to invest in the open-source good are low. However,
as long as α < 1, the ratio xo/xp is strictly positive and the individual investment
of O firms is multiplied by a factor that goes to infinity. Therefore, no xo

xp
→ ∞ and

so/sp →∞, which means all firms choose to be O.
When α = 1, on the other hand, no →∞, xo/xp → 0, and their product converges

to a constant. In equilibrium, the ratio of market shares converges to 1 − δ and the
ratio of profits converges to 1, so both types of firms coexist. As in Proposition 2, in
the equilibrium with coexistence, P firms are larger than O firms.

In the equilibrium with coexistence, the aggregate market share of O firms is de-
creasing in δ, but the proportion of O firms is increasing in δ. As δ increases, two effects

4We are grateful to a referee for suggesting this extension.
5In the logit model, the support for consumer tastes (εij) is the real line, which means a new firm

can always grab some market share with a small investment in R&D, even under Bertrand competition.
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occur: competition intensifies, which lowers mark-ups; and vertical differentiation be-
comes more important, which increases the returns to investment. As a consequence, P
firms become larger, the aggregate market share of O firms becomes smaller, and there
is room for fewer P firms.

5. Welfare analysis

One of the advantages of the logit model is that it can be used to construct a
representative consumer whose utility embodies the aggregate behavior of the continuum
of users (Anderson, de Palma, and Thisse, 1992).

Let si be the quantities of each variety the representative consumer consumes, and
let
∑
si = 1. Total income is y, and z represents consumption of the numeraire. The

utility of the representative consumer is

U =
∑

qi si −
1

δ

∑
si ln(si) + z.

The utility function embodies two different effects. The first term represents the direct
effect from consumption of the n varieties, in the absence of interactions. The sec-
ond term introduces an entropy effect, which expresses the representative consumer’s
preference for variety.

The utility function is quasilinear, which implies transferable utility. Thus, social
welfare is the sum of consumer utility and firm profits:

W =
∑

qi si −
1

δ

∑
si ln(si) + y −

∑
c xi. (10)

The Social Planner’s problem is to maximize (10) subject to
∑
si = 1. The Social

Planner will always have all firms sharing their investment in R&D. Also, given the
concavity and symmetry of the utility function, the social planner will set si = 1/n for
all i. To determine the optimal investment, the Social Planner maximizes

W = α ln(nx∗) + (1− α) ln(x∗) +
1

δ
ln(n) + y − n c x∗,

which leads to an optimal investment equal to x∗ = 1/(c n).
In the market equilibrium, product quality is suboptimal regardless of the number

of O and P firms: O firms are subject to free-riding, which leads to a suboptimal
investment in R&D, but P firms do not share their improvements on the primary good,
generating an inefficient duplication of effort.

5.1. Government policy

Now we turn to an analysis of government policy. We will show the first best can
be achieved by using a tax-subsidy scheme. The cost of R&D for O is co = (1−κ) c,
where κ is a proportional subsidy on the investment of O firms. This subsidy, in turn,
is financed by proportional or lump-sum taxes paid by consumers.
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The ratio of investments of O and P firms becomes

xo
xp

= (1− κ)−1
so
sp

(
1− α no−1

no

1

1− so

)
,

and the equation characterizing the equilibrium market shares becomes

(1− δ) ln

(
so
sp

)
+

1

1− so
− 1

1− sp
= δ ln

(
1− α no−1

no(1−so)

)
+α δ ln (no)− δ ln (1− κ).

An increase in the subsidy increases the difference in investments and market shares
between O and P, and also decreases the cost of investment for O, so firms are more
tempted to become O. Lemma 4 shows that if the subsidy is high enough, O firms will
have a higher market share than P in a second-stage equilibrium.

Lemma 4. so > sp in a second-stage equilibrium if and only if

κ > 1−
(

1− α n

n− 1

no − 1

no

)
nαo .

In particular, if κ > 1 −
(
1− αn(n− 2)(n− 1)−2

)
(n − 1)α, then so > sp for no =

n− 1; therefore, all firms want to be O. Proposition 4 shows the optimal policy.

Proposition 4. The optimal subsidy is κ∗ = α, which attains the first-best levels of
investment. In equilibrium, all firms decide to be O.

The subsidy has a double effect: it increases the investment of O firms, and it
encourages P firms to become O (to share R&D). The optimal subsidy is increasing in
the degree of public good of the investment in R&D. In other words, the subsidy should
be higher for projects for which the direct appropriability of the investment in R&D of
O firms is not very high.

Finally, note that in our model, lump-sum or proportional taxes are equivalent,
because each consumer buys one product; therefore, proportional taxes do not affect
the quantities sold. Thus financing the subsidy with proportional taxes does not cause
a deadweight loss and the policy maker can achieve the first best.

6. Lower differentiation for open-source products

Given that O packages share the same primary good, they are likely to be more
similar to each other than P packages. To introduce this difference in the degree of
substitution, we use a nested logit model (Ben-Akiva, 1973), which adds an element of
endogenous horizontal differentiation to the trade-off between collaboration and secrecy.
By becoming P, firms are able to differentiate their product more than O firms.

The main consequences are that (i) the equilibrium number of firms in O is smaller
than in the previous model, (ii) equilibria with only P firms exist, and (iii) parameter
values exist that lead to multiple equilibria.

15



Consumers are heterogeneous in two different dimensions: they have idiosyncratic
tastes for the primary good and idiosyncratic tastes for the complementary good. The
relative strength of these two forces drives the differences in substitution. Following
the nested logit representation of Cardell (1997), consumer j’s indirect utility from
consuming package i, based on primary good k, is

vikj = qi + y − pi + ηkj + (1− σ) εij ,

where qi is defined as in section 2, ηkj is a primary good idiosyncratic component,
and σ ∈ [0, 1] weighs the different idiosyncratic components. Assumption 2 replaces
Assumption 1 for the standard logit case.

Assumption 2. The idiosyncratic components εij, corresponding to complementary
good i, are i.i.d. according to the double exponential distribution with scale parameter δ.
The idiosyncratic components ηkj, corresponding to primary good k, are i.i.d. according
to a distribution such that ηkj + (1 − σ) εij is distributed double exponential with scale
parameter δ.

Assumption 2 implies the horizontal differentiation term ηkj + (1 − σ) εij has the
same distribution as εij in the previous model. The variance of ηkj is σ(2−σ)π2/(6 δ2).
Cardell shows a unique distribution for ηkj exists such that Assumption 2 holds.

Parameter σ determines the relative strength of the horizontal differentiation forces.
As σ increases, consumers become more differentiated in their tastes for the primary
good and less differentiated in their tastes for the complementary good. When σ = 0,
consumers only have idiosyncratic preferences for the complementary good, and the
model becomes the standard logit model of previous sections. When σ = 1, consumers
only have idiosyncratic preferences for the primary good, and O firms sell a homogeneous
good.

The proportion of consumers choosing open-source variant i can be decomposed in
the following way:

si = si|o So, (11)

where So is the aggregate market share of the open-source primary good, and si|o is the
share of variant i within the open-source project.

Under Assumption 2, i’s market share within the open-source project depends on
its individual contribution to the project:

si|o =

exp

(
δ

(1− α) lnxi − pi
(1− σ)

)
∑

i∈O exp

(
δ

(1− α) lnxi − pi
(1− σ)

) .
The aggregate market share So depends on the average value of the O varieties (the
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expected value of the maximum of the utilities), Vo:

So =
exp (δ Vo)

exp (δ Vo) +
∑

i∈P exp (δ(qi − pi))
,

Vo =
(1− σ)

δ
ln

(∑
i∈O

exp

(
δ(qi − pi)
(1− σ)

))
.

P nests are composed only of one P product, so the average value of the nest is the
value of its only component. Therefore, the market share of a P firm is simply

si =
exp (δ(qi − pi))

exp (δ Vo) +
∑

i∈P exp (δ(qi − pi))
. (12)

Further intuition on the substitution patterns implied by the assumptions on pref-
erences can be obtained by computing the demand sensitivity to changes in price. The
slope of the demand function for a P firm is

∂si
∂pi

= −δsi(1− si),

and for an O firm, it is

∂si
∂pi

= −δsi
(

1

1− σ
− σ

1− σ
si|o − si

)
.

These expressions summarize the substitution patterns in the nested logit model: O
firms face a more elastic demand than P firms, and the price elasticity for O firms is
increasing in σ. If σ = 0, the slope of the demand is the same for O and P firms, as in
the standard logit model. If σ = 1, the slope of the demand for O firms goes to infinity.

The optimal price and investment of P firms have the same functional forms as
before. The optimal price and investment of O firms become

po =
1

δ
(

1− so + σ
1−σ

no−1
no

) , (13)

xo =
1

c
so

1− α

1− σ
(no−1)/no(

1− so + σ
1−σ

no−1
no

)
 . (14)

Conditional on market shares, optimal prices for O firms are decreasing in σ, whereas
optimal prices for P firms are independent of σ.

From (12) and (11), we obtain the ratio of market shares so/sp. Introducing prices
and investments, taking logs and rearranging terms, we obtain

(1−δ) ln

(
so
sp

)
+

1

1− so + σ
1−σ

no−1
no

− 1

1− sp
(15)

= δ ln

1− α

1−σ
(no−1)/no(

1− so + σ
1−σ

no−1
no

)
+ (α δ − σ) ln (no).
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As in the standard logit case, to guarantee the existence of a symmetric equilibrium
we need enough horizontal differentiation relative to vertical differentiation. We assume
σ ≤ 1− δ, which is a sufficient condition. Proposition 5 summarizes the equilibrium of
the second-stage of the game.

Proposition 5. A second-stage equilibrium for the nested model exists and is unique.
Given no, the equilibrium market shares solve (15) and (7).

Comparing equations (6) and (15), we can see the higher substitution between O
varieties has three effects on equilibrium market shares. First, a lower investment of O
firms occurs due to the lower return to investment (first term on the right-hand side of
15). Second, the higher substitution directly and negatively affects the average value
of the complementary good (second term on the right-hand side of 15). Consumers
care for variety; therefore, the value of choosing an O package decreases when the
complementary good becomes less differentiated. Third, the equilibrium price of O
firms is smaller because of the higher substitution (second term on the left-hand side of
15). The first two effects tend to reduce the market share of O relative to P, and the
third effect tends to increase it.

To solve the first stage of the game, we calculate f(no) = πo(no)−πp(no−1), where
π(no) = pi si − c xi. Equilibrium conditions are the same as in the standard logit case.

Figure 3 shows the graph of f(no) for different parameter values. We can make three
interesting observations. First, as σ increases for given α and δ (O varieties become more
similar), the equilibrium number of firms choosing O decreases (Figure 3a). Second, if σ
is high enough, equilibria with only P firms exist (Figure 3b). Third, for some parameter
values, the model exhibits multiple equilibria (in Figure 3c an equilibrium exists with
no = 2 and another with no = 10). In this case, coordination failures may imply a
desirable open-source project fails to form.

Figure 4 shows the equilibrium regions for different values of α and σ, given δ = 0.6
and n = 10 (in case of multiple equilibria, we take the equilibrium with highest no).
Open source will subsist if the differentiation between O varieties is high enough (σ is
low enough). Also, values of α exist such that as σ increases, the equilibrium goes from
all O, to coexistence and then to all P. For coexistence, we need a combination of low σ
and high α. Finally, our simulations show that whenever O and P coexist, the quality
and market share of P firms is larger than that of O firms, which means that the main
result of the paper still holds.

As in the case of the standard logit, studying what happens when the number of
firms goes to infinity is interesting. Proposition 6 characterizes the equilibrium of the
limiting economy for the nested logit model and formalizes the previous intuition on
the effects of σ on the equilibrium.

Proposition 6. A subgame perfect equilibrium of the limiting economy exists, but the
model may exhibit multiple equilibria. A threshold 0 ≤ σ̃(α, δ) < αδ exists such that

(i) If α < 1 and σ < α δ, an equilibrium exists in which all firms decide to be O.
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(a) Decrease in no when σ increases. (b) All P Equilibrium.

(c) Multiple Equilibria.

Figure 3: Equilibrium of the nested logit model.

(ii) If σ ≥ σ̃(α, δ), an equilibrium exists in which all firms decide to be P.

(iii) If α = 1 and σ < σ̃(1, δ), an equilibrium exists in which both types of firms coexist.

As σ increases, O products become more similar. When α < 1, the ratio of equi-
librium market shares depends on the factor no

α δ−σ. When α δ − σ > 0, the effects of
collaboration in R&D are stronger than the effects of lower substitution, and the differ-
ence in market shares between O and P firms grows large as no goes to infinity. As a
consequence, an equilibrium exists in which all firms decide to be O. When α δ−σ ≤ 0,
collaboration in R&D is not strong enough to compensate for the effects of having a
lower substitution; therefore, P firms obtain an advantage in market share. Thus, no
equilibrium with O firms exists. For intermediate values of σ, two equilibria exist, one
in which all firms choose to be O and another in which all firms choose to be P.

Finally, when α = 1, two types of equilibria exist. If σ < σ̃(1, δ), the unique
equilibrium has both types of firms. As σ gets closer to 0, the number of O firms in
equilibrium increases.6 If σ ≥ σ̃(1, δ), on the other hand, the unique equilibrium has
only P firms.

6Unlike the case of σ = 0, when σ > 0 and α = 1, the number of O firms in equilibrium is finite. See
the proof of Proposition 6 for more details.
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Figure 4: Equilibrium regions for the nested logit.

7. Conclusion

This paper investigates the motivations of commercial firms to participate in open
source, and the implications of direct competition between open-source and proprietary
firms on R&D investments and equilibrium market shares. We present a model in
which firms decide whether to become open source or proprietary, and their investment
in R&D and price. Both types of firms sell packages composed by a primary good (e.g.,
software) and a complementary private good (e.g., support and training services or
hardware). The difference between both types of firms is that open-source firms share
their investments in R&D, whereas proprietary firms develop their products on their
own.

Our main contribution is to determine conditions under which open-source and pro-
prietary firms coexist in equilibrium. This equilibrium is characterized by an asymmet-
ric market structure: proprietary firms invest more in R&D and obtain a larger market
share than open-source firms. Open-source firms, on the other hand, benefit from lower
development costs. This result is robust to the introduction of a lower differentiation
among open-source varieties. We also study a limiting economy, and show conditions
under which large numbers favor cooperation in R&D.

Our model points to several important characteristics of open source. In particular,
the success of open source will depend on (i) the strength of the complementarity be-
tween primary and complementary goods, (ii) the possibility to differentiate the firm’s
open-source variant from other open-source and proprietary products, and (iii) the de-
gree of appropriability of investments in R&D.

The welfare analysis shows the equilibrium with coexistence is suboptimal for two
reasons: too little collaboration (caused by proprietary firms) and too little investment
in R&D (caused by open-source firms). We show a subsidy to open-source development
can improve welfare not only because it increases the investment in R&D, but also
because it encourages commercial firms to participate in open source, thereby enhancing
collaboration. This finding explains the active involvement of governments in promoting
open source.

Our objective was to present a tractable model analyzing the coexistence of open-
source and proprietary firms. We believe our paper is an important first step in the
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analysis of the behavior of profit-maximizing firms in open source. Several directions for
further research are possible. First, the model could be modified to study bundling and
compatibility decisions. Second, consumer preferences could be modified to introduce
network effects. Third, an important technological difference between open-source and
proprietary firms is that the former benefit more from user innovation than the latter.
In open source, users can access the source code, which allows them to customize the
software program to their needs and to correct bugs at a faster rate.
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Appendix A: Proofs of Theorems in Text

Proof of Proposition 1. The first-order conditions with respect to pi and xi are

∂πi
∂pi

=
∂si
∂pi

pi + si ≤ 0 with equality if pi > 0, (16)

∂πi
∂xi

=
∂si
∂xi

pi − c ≤ 0 with equality if xi > 0. (17)

For the moment, assume pi > 0 and xi > 0 in equilibrium, so the first-order conditions hold
with equality. Later, we will show no corner equilibria exist. Working with equation (16), we
obtain the optimal price:

pi =
1

δ(1− si)
. (18)

Equation (18) holds for both types of firms (O and P). To find the optimal investment in
R&D, we need to calculate ∂si/∂xi, which in the case of O firms, is

∂si
∂xi

= δ si(1− si)
(

α∑
i∈O xi

1−
∑
i∈O si

1− si
+

(1− α)

xi

)
,
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and in the case of P firms, is

∂si
∂xi

= δ si(1− si)
1

xi
.

Imposing symmetry and introducing these expressions into (17), we obtain

xo =
1

c
so

(
1− α no−1

no

1

1− so

)
, (19)

xp =
1

c
sp, (20)

and the ratio of optimal investments in equilibrium,

xo
xp

=
so
sp

(
1− α no−1

no

1

1− so

)
. (21)

From (2), we obtain the ratio of market shares between O and P firms:

so
sp

= exp (δ(qo − qp + pp − po)), (22)

ln

(
so
sp

)
= δ (qo − qp) +

1

1− sp
− 1

1− so
, (23)

and from the definition of qo and qp, we obtain

qo − qp = ln

(
xo
xp

)
+ α ln (no). (24)

From equations (21), (23), and (24), we obtain equation (6), which is an implicit equation
determining the relation of market shares between O and P firms in equilibrium. This equa-
tion, together with the equation establishing that the sum of the market shares is equal to 1,
completely characterizes the equilibrium.

Now we will show no corner solutions exist (xi > 0 and pi > 0 in the symmetric equilibrium).
If pi = 0 then profits are zero and the firm would find increasing pi to be profitable. To analyze
xi = 0, we have to specify what happens with si when xi = 0. Assume that if xi = 0 and xj > 0

for at least one j 6= i then si = 0. When xi = 0 for all i, on the other hand, si = exp (−δ pi)∑
exp (−δ pi) .

Three cases exist: xp = 0 and xo > 0, xp > 0 and xo = 0, and xp = 0 and xo = 0. If xp = 0 and
xo > 0 then sp = 0 and a P firm makes zero profits. But a P firm can deviate to pi = 1

δ (1−si)
and xi = si

c with si > 0. Such a deviation is profitable if si > 1 − 1
δ , which always holds. If

xp > 0 and xo = 0 then so = 0 and an O firm makes zero profits. But an O firm can deviate to
pi = 1

δ(1−si) and xi = si
c obtaining positive profits. If xp = 0 and xo = 0 then sp = so = 1

n . An

O or a P firm can deviate to xi = ε > 0 obtaining a discontinuous jump in revenue (si = 1) and
a small increase in costs.

Finally, to show existence and uniqueness, we need to prove two things: (1) only one fixed
point of the system of equations in Proposition 1 exists (only one symmetric equilibrium ex-
ists), and (2) the profit function is concave at the equilibrium (the second-order conditions for
optimality hold).
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Let us first show only one fixed point exists in terms of equilibrium market shares. Define
the function g(so) by plugging equation (7) in equation (6):

g(so) = (1− δ) ln

(
(n− no)so
1− noso

)
− δ ln

(
1− α no − 1

(1− so)no

)
+ (25)

− α δ ln(no)−
n− no

n− 1− no(1− so)
+

1

1− so
.

By construction, so solves equations (6) and (7) if and only if g(so) = 0. Existence of at least
one so such that g(so) = 0 follows from continuity of g and the fact that limso→0 g(so) = −∞
and limso→ 1

no
g(so) = +∞. To show that only one such so exists, it is sufficient to show that g

is strictly increasing. Computing this derivative, we obtain

∂g

∂so
=

1− δ
so(1− no so)

+
α δ (no−1)/(1− so)

(1− α)(no−1) + 1− so no
+

+
(n− no)no

(1 + no(1− so)− n)2
+

1

(1− so)2
.

All terms are positive because sono ≤ 1. It follows that a unique (so, sp) exists solving the
system of equations.

To prove the profit function is concave at the equilibrium candidate, we will show the
Hessian of the profit function (at the equilibrium price and market share) is negative definite. A
necessary and sufficient condition for negative definiteness is that the leading principal minors
alternate sign. To simplify the exposition, we only show the determinants of the Hessian of both
firms:

|Hp| =
δ s2p
x2p

(
1− δ (1− sp)2

)
,

|Ho| ≥ δ
s2o
x2o

((
1− no so

(1− so)n2o
α+ (1− α)

)
− δ (1− so)2

(
1− no so

(1− so)no
α+ (1− α)

)2
)
.

A sufficient condition for both determinants to be positive is δ ≤ 1, which we have assumed
throughout the paper. Thus the concavity of the profit function at the equilibrium is guaranteed
for both types of firms.

Proof of Lemma 1. To prove the first part of the lemma, we only have to check the sign of
g
(
1
n

)
, where g is defined in (25). If g

(
1
n

)
< 0 then so > 1/n; therefore, so > sp. Then

g

(
1

n

)
= −δ

(
ln

(
1− α n

n− 1

no−1

no

)
+ α ln (no)

)
,

and g
(
1
n

)
< 0 if and only if

α
nαo

nαo − 1

no−1

no
>
n− 1

n
.

Let h(α, no) = α
nαo
nαo−1

no−1
no

. Given that h(α, no) is increasing in α, and h(0, no) < (n− 1)/n <

h(1, no), only one α̂ exists such that h(α̂, no) = (n − 1)/n. Moreover, for α > α̂, we have
h(α, no) > (n− 1)/n and sp > so, and viceversa.

Finally, the proof that α̂(no, n) is increasing in n and no follows from applying the implicit
function theorem to F (α, no, n) = h(α, no)− (n− 1)/n, and by observing that ∂h/∂no < 0.
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Proof of Lemma 2. By the implicit function theorem, ∂so∂α = − ∂g/∂α
∂g/∂so

. We know ∂g/∂so > 0.

Let us now compute ∂g/∂α:

∂g

∂α
= ln (no)−

no − 1

α+ (1− so − α)no
.

Therefore, ∂so/∂α = 0 when ∂g/∂α = 0. Solving for the value ŝo that makes ∂g/∂α = 0, we
obtain

ŝo =
ln (no)(no(1− α) + α) + 1− no

no ln (no)
.

Substituting ŝo in g = 0, we obtain an equation determining the value αs that makes the
derivative equal to zero. To prove that to the right of αs the graph of so(α) is decreasing,
assume to the contrary ∂g/∂α > 0. Then for α > αs, it has to be the case that so > ŝo which
implies ∂g/∂α < 0, a contradiction. Then ∂so/∂α < 0 for α > αs. A similar reasoning implies
∂so/∂α > 0 for α < αs.

Proof of Lemma 3. By the implicit function theorem, ∂so∂δ = − ∂g/∂δ
∂g/∂so

. In the proof of Propo-

sition 1, we showed ∂g/∂so > 0. Next we will determine the sign of ∂g/∂δ. Computing this
derivative, we obtain

∂g

∂δ
= −α lnno − ln

(
1− α no − 1

no(1− so)

)
− ln

(
(n− no)so
1− noso

)
= −1

δ

[
(1− δ) ln

(
so
sp

)
+

1

1− so
− 1

1− sp

]
− ln

(
(n− no)so
1− noso

)
. (26)

In the second row, we use the expression for g(so) = 0. If α > α̂ then so < sp (by Lemma 1),
∂g/∂δ > 0 (by equation (26)), and ∂so/∂δ < 0. Conversely, if α < α̂ then so > sp, ∂g/∂δ < 0,
and ∂so/∂δ > 0.

Proof of Proposition 2. We begin by showing existence. For no = 1 to be an equilibrium,
we only need f(2) ≤ 0. Likewise, for no = n to be an equilibrium, we only need f(n) ≥ 0. To
have an equilibrium with both types of firms (1 < no < n), we need f(no) ≥ 0 and f(no+1) ≤ 0
at the equilibrium no. Suppose no equilibrium exists with no = 1 or no = n. Then f(2) > 0
and f(n) < 0, so f(no) goes from positive to negative at least once when going from no = 1 to
no = n. Therefore, existence of an equilibrium is guaranteed.

Next, we show f(2) > 0 for any n, α, and δ, which means the equilibrium always has at
least two O firms. From the definition of f(no), we obtain

δ f(2) =
so(2)

1− so(2)

(
1− δ (1− so(2)) +

αδ

2

)
− 1

n− 1

(
1− δ n− 1

n

)
.

Let s̄o be the maximum value of so(2) for which f(2) ≤ 0. From the above equation, we
obtain

s̄o =
αn− 2

4 (n− 1)n
−
n
(
1− δ

(
1− α

2

))
2 δ (n− 1)

+

√√√√δ + (1− δ)n
δ (n− 1)n

+

(
n

2 δ (n− 1)
−
(
1 +

(
1− α

2

)
n
)

2n

)2

.

Let w = g(s̄o), where g(so) is defined in (25). w < 0 implies so(2) > s̄o, which means
f(2) > 0. w is strictly increasing in n and has the following upper bound as n→∞:

w̄ = −α δ ln(2) + (1− δ) ln

(
1− δ

1− δ
(
1− α

2

))− δ ln
(

1− α

2

)
.
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w̄ is strictly convex in δ and α, which means the maximum is at δ = 0 or δ = 1, and α = 0 or
α = 1. It is straightforward to show w̄ goes to zero as δ or α go to zero, and also when both δ
and α go to 1. Given that w is strictly increasing in n, we conclude that w(n, δ, α) is negative
for any finite n. Therefore, f(2) > 0.

Lemma A1 will prove important in characterizing the subgame perfect equilibrium of the
game. For an O firm to find it profitable to become P (f(no) < 0), the increase in market share
from becoming P must be large enough to compensate for the increase in cost. If α < α̂(no−1, n),
O firms have a larger market share, so deviating is not profitable to them (f(no) > 0). Corollaries
A1 and A2 are two important implications of this lemma.

Lemma A1 (Sufficient condition for positive f). If α < α̂(no−1, n) then f(no) > 0.

Proof. Rearranging f(no) and multiplying by δ, we obtain

δ f(no) =
so

1− so
(1− δ(1− so))−

s̃p
1− s̃p

(1− δ(1− s̃p)) + αδ
so

1− so
no−1

no
,

where so = so(no) and s̃p = sp(no − 1). The sign of f depends on the sign of the right-hand
side of the equation. The first two terms have the same functional form and are increasing in s.
The last term is always positive. Therefore, if so(no) ≥ sp(no−1), then f(no) > 0. A sufficient
condition is that so(no−1) ≥ 1/n and so(no) ≥ 1/n, which is equivalent to α < α̂(no−1, n) and
α < α̂(no, n). However, α̂(no, n) is decreasing in no, so α < α̂(no−1, n) implies f(no) > 0.

Corollary A1 (Necessary condition for an interior equilibrium). At an interior equilibrium no,
it is necessary that α ≥ α̂(no, n).

Proof. For an interior equilibrium at no, it is necessary f(no) ≥ 0 and f(no+1) ≤ 0, but Lemma
A1 implies that for f(no+1) ≤ 0, we need α ≥ α̂(no−1, n).

Corollary A2 (Sufficient condition for an equilibrium with no = n). If α ≤ α̂(n − 1, n), all
firms decide to be O in equilibrium.

Proof. If α ≤ α̂(n − 1, n) then f(n) ≥ 0, so if no = n, no firm would gain by becoming a P
firm.

Corollary A1 states that in any interior equilibrium, the P firms must have a larger market
share than O firms; therefore, a higher quality product. Corollary A2, on the other hand,
shows that if the degree of public good of the investment is low enough, O firms have a larger
market share for any no; therefore, all firms decide to collaborate in the open-source project.
Lemma A2 complements Corollary A2, by providing the necessary and sufficient condition for
an equilibrium with no = n.

Lemma A2 (Necessary and Sufficient condition for equilibrium with no = n). Given n > 3
and δ, ᾱ ∈ (α̂, 1) exists such that f(n) ≥ 0 if and only if α ≤ ᾱ.

Proof. The equilibrium condition with no = n depends only on the sign of f(no), so for sim-
plification, we will work with a scaled version of f(no), δ f(no), for the rest of this proof. We
know f(n) > 0 for α < α̂(n− 1, n). We need to determine the sign of f(n) for the rest of values
of α. When no = n, so = 1/n. Therefore,

f(n) =
1

n− 1
− δ(1− α)

n
− s̃p

1− s̃p
(1− δ(1− s̃p)) , (27)
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where s̃p = sp(n− 1). We need to find the value of s̃p that makes f(n) = 0. This equation has
two roots. The only positive root is

s̃p =
−n2(1− δ)− (1− α)δ − nαδ +

√
n4 − 2(n− 1)n2(n− 1− α)δ + z2

2δ n (n− 1)
,

where z = δ (n− 1) (n− 1 + α). The corresponding value for so(n− 1) is

s̃o =
n2 + z −

√
n4 − 2(n− 1)n2(n− 1− α)δ + z2

2δ n (n− 1)2
.

Plugging this value in the equilibrium condition (25) and solving for α, we obtain the value ᾱ,
where f(n) = 0. Lemma A1 implies ᾱ ≥ α̂(n − 1, n). Lemma 2 implies ∂s̃p/∂α > 0 in the
relevant area. Then ᾱ is the unique value of α such that f(n) = 0.

To finish the proof, we need to show f(n) > 0 for α < ᾱ and f(n) < 0 for α > ᾱ. Given the
continuity and monotonicity of sp, it suffices to show some value to the right or to the left of ᾱ
exists such that these inequalities hold.

Consider first the case of α < ᾱ. We know that at α = α̂(n−1, n), f(n) > 0. Then f(n) > 0
for α < ᾱ. For α > ᾱ, consider α = 1. When α = 1, the investment of O firms is low, and P
firms have the largest advantage. In this case, f(n) < 0, which proves this inequality holds for
any α > ᾱ.

Proposition 2 follows directly from Corollaries A1 and A2, and Lemma A2.

Proof of Proposition 3. When n → ∞, three types of equilibria exist. Remember we de-
fined πk(no) as the profit of firm type k when there are no O firms. For an equilibrium with

coexistence, we need limn→∞
πo(no)
πp(no)

= 1. For an equilibrium with only O firms, we need

limn→∞
πo(n)
πp(n)

≥ 1, and for an equilibrium with only P firms, we need limn→∞
πo(2)
πp(1)

≤ 1.

Taking the limit of equation 6, we obtain a function determining the limit of the ratio of
market shares,

(1− δ) ln lim
n→∞

so
sp

= δ ln lim
n→∞

[(
1− α no − 1

no(1− so)

)
nαo

]
,

and from the definition of πo and πp in equations (8) and (9), we obtain the ratio of profits,

lim
n→∞

πo
πp

= lim
n→∞

1− δ
(

1− αno−1no

)
1− δ

lim
n→∞

so
sp
.

In an equilibrium with coexistence, no → ∞ as n → ∞. Two cases exist. If α < 1 then
so
sp
→ ∞ and πo

πp
→ ∞, which contradicts the necessary condition for an equilibrium with

coexistence. α = 1, on the other hand,

(1− δ) ln lim
n→∞

so
sp

= δ ln lim
no→∞

(1− no so),

so so
sp

may converge to a constant if no so converges to a constant. Specifically, if no so →
1− (1− δ) 1−δ

δ , then so
sp
→ 1− δ and πo

πp
→ 1, and an equilibrium with coexistence exists.

Let us now look for an equilibrium with only O firms. If α < 1, so
sp
→ ∞ and πo

πp
→ ∞,

which verifies the condition for an equilibrium with only O firms. If α = 1, no so → 1, which
means so

sp
→ 0 and πo

πp
→ 0, which contradicts the necessary condition for an equilibrium with

only O firms.
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Finally, let us look for an equilibrium with only P firms. We have to show that when no = 2,
O firms would gain by becoming P. When no = 2,

lim
n→∞

so
sp

=
[(

1− α

2

)
2α
] δ

1−δ
,

lim
n→∞

πo(2)

πp(1)
=

1− δ
(
1− α 1

2

)
1− δ

[(
1− α

2

)
2α
] δ

1−δ
.

The above expression is larger than 1 for all α and δ. Therefore, no equilibrium with only P
firms exists.

Proof of Lemma 4. The equilibrium condition for the second stage is fully characterized by

(1− δ) ln

(
so
sp

)
+

1

1− so
− 1

1− sp
= δ ln

(
1− α no−1

no(1−so)

)
+ α δ ln (no)− δ ln (1− κ), (28)

and the market clearing condition no so+(n−no) sp = 1. The left-hand side in equation 28 is zero
when so = sp and it is strictly increasing in so. Then so > sp if and only if the right-hand side is

positive. Finally, the right-hand side is positive if and only if 1− κ <
(

1− α n
n−1

no−1
no

)
nαo .

Proof of Proposition 4. Suppose the subsidy is high enough such that all firms decide to
be O. Individual investments are xo = (1 − α)/(n co). The government wants to find the
subsidy that attains the optimal investment x∗ = 1/(c n). Thus the optimal subsidy is κ∗ = α.
Now we have to show that given subsidy κ∗, all firms choose to be O. Remember that if κ >
1−

(
1− αn(n− 2)(n− 1)−2

)
(n− 1)α then so > sp for no = n− 1; therefore, all firms want to

be O. Given that n(n − 2)(n − 1)−2 ∈ [0, 1], κ > 1 − (1 − α)(n − 1)α is a sufficient condition,
which holds if κ = α.

Proof of Proposition 5. The first-order conditions are (16) and (17). As in the standard logit
model, no corner solutions exist so the first-order conditions hold with equality. Equilibrium
prices and investment for P firms are identical to the logit model, so we will focus on the O
firms. In the case of O firms, the partial derivative of the market share with respect to the price
is

∂si
∂pi

= − δ

(1−σ)
si(1− σ si|os − (1−σ) si).

Then from the equation (16) and imposing symmetry, we obtain the optimal price in equation
(13). To find xo, we need to calculate ∂si/∂xi for O firms:

∂si
∂xi

= δ (1−
∑
i∈O

si)
α∑
i∈O xi

+ δ
si(1− σ si|os − (1−σ) si)

(1−σ)

(1− α)

xi
.

From equation (17) and imposing symmetry, we obtain equation (14), and the ratio of optimal
investments in equilibrium:

xo
xp

=
so
sp

1− α

1−σ
(no−1)/no(

1− so + σ
1−σ

no−1
no

)
 . (29)
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The ratio of market shares between O and P firms is

so
sp

= n−σo exp (δ(qo − qp + pp − po)), (30)

ln

(
so
sp

)
= −σ lnno + δ (qo − qp) +

1

1− sp
− 1

1− so + σ
1−σ

no−1
no

, (31)

and from the definition of qp and qo, we obtain:

qo − qp = ln

(
xo
xp

)
+ α ln (no). (32)

From equations (29), (31), and (32), we obtain equation (15), which is an implicit equation
determining the relation of market shares between O and P firms in equilibrium. This equation,
together with the equation establishing the sum of the market shares is equal to 1, completely
characterizes the equilibrium.

Finally, to show existence and uniqueness, we need to prove two things: (1) only one fixed
point of the system of equations in Proposition 5 exist (only one symmetric equilibrium ex-
ists), and (2) the profit function is concave at the equilibrium (the second-order conditions for
optimality hold).

To show (1), define g(so) by plugging (7) in equation (15). Then the result follows from an
application of the mean value theorem as in the standard logit model.

To prove the profit function is concave at the equilibrium candidate, we will evaluate the
determinant of the Hessian of the profit function at the equilibrium price and market share, and
show it is positive definite. The determinant of the Hessian for O firms is

|Ho| ≥ δ
s2o

(1− σ)x2o
(1− σsi|os)

(
(1− σ)

δ

(
(1− σ)(1− no so)

(1− σsi|os − (1− σ)so)n2
o

α+ (1− α)

)
+

−
(

(1− σ)(1− no so)
(1− σsi|os − (1− σ)so)no

α+ (1− α)

)2
)
.

The determinant of the Hessian for P firms is equivalent to that of the standard logit model.
A sufficient condition for both determinants to be positive is (1− σ) ≥ δ or σ ≤ (1− δ), which
we have assumed for this section of the paper. Thus, the concavity of the profit function at the
equilibrium is guaranteed for both types of firms.

Proof of Proposition 6. We have characterized the equilibrium when σ = 0 in Proposition 3.
Therefore, for the rest of the proof, assume σ > 0. Taking the limit of equation (15), we obtain
the ratio of market shares in equilibrium, and from the definition of πo and πp, we obtain the
ratio of profits,

lim
n→∞

πo
πp

= lim
n→∞

1

1 + σ
1−σ

no−1
no

lim
n→∞

1− δ + δ
1−σ (α− σ) no−1no

1− δ
lim
n→∞

so
sp
.

First, we look for equilibria with no →∞ (coexistence or only O firms). If α < 1, then

(1− δ) ln lim
n→∞

so
sp

= σ + δ ln

[
(1− α) lim

no→∞
nα−(σ/δ)o

]
.

α < 1 in three cases. If α > σ/δ then so
sp
→ ∞ and πo

πp
→ ∞ when no → ∞; therefore, an

equilibrium with only O firms exists. If α < σ/δ then so
sp
→ 0 and πo

πp
→ 0; therefore, no
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equilibrium exists in which no → ∞. Finally, if α = σ/δ then so
sp
→ e

σ
1−δ
(
1− σ

δ

) δ
1−δ < 1 and

πo
πp
→ so

sp
; therefore, no equilibrium exists in which no →∞. If α = 1 then

(1− δ) ln lim
n→∞

so
sp

= σ + δ ln lim
no→∞

[
(1− σ) (1− no so)n−σ/δo

]
,

so so
sp
→ 0 and πo

πp
→ 0 when no → ∞; therefore, no equilibrium exists in which no → ∞.

Therefore, an equilibrium exists with no →∞ only when σ/δ < α < 1, and in such equilibrium,
all firms choose to be O.

Next we look for an equilibrium with only P firms, for which we need limn→∞
πo(2)
πp(1)

≤ 1.

Given that firms are infinitesimal when n → ∞, the market share of P firms is the same when
no = 1 and no = 2. Taking the limit of equation (15), we obtain

lim
n→∞

so
sp

= 2
α δ−σ
1−δ e

σ
(1−δ)(2−σ)

(
1− α

2− σ

) δ
1−δ

;

therefore, the limit of the ratio of profits is

lim
n→∞

πo(2)

πp(1)
=

2 (1− σ) (1− δ) + δ (α− σ)

(1− δ) (2− σ)
2
α δ−σ
1−δ e

σ
(1−δ)(2−σ)

(
1− α

2− σ

) δ
1−δ

.

Denote the right-hand side of the above expression by F (α, δ, σ), and let σ̃(α, δ) be the value of

σ that solves F (α, δ, σ) = 1. F (α, δ, σ) is decreasing in σ, which means limn→∞
πo(2)
πp(1)

≤ 1 (i.e.,

an equilibrium with only P firms exists) if and only if σ ≥ σ̃(α, δ). Note this condition holds
not only for α < 1, but also for α = 1.

Next we show 0 < σ̃ < α δ. We know σ̃ > 0 from Proposition 3. Also, σ̃ ≥ α δ if and only if
F (α, δ, α δ) ≥ 1. Substituting σ = α δ into F (α, δ, σ) and rearranging, we obtain the following
condition:

α

2− α δ
+ ln

(
1− α

2− α δ

)
≥ 0,

which is not possible, given that α/(2− α δ) > 0. Therefore, σ̃ < α δ.
Finally, we know that when α = 1, no equilibrium exists such that no → ∞; that is,

no equilibrium exists in which all firms choose to be O, and no equilibrium exists in which a
proportion of firms chooses to be O. We also know an equilibrium with only P firms exists only
when σ ≥ σ̃(α, δ). Therefore, it remains to show what the equilibrium is when α = 1 and
0 < σ < σ̃(α, δ). We can easily see that in this case, an equilibrium with coexistence exists,
in which the number of O firms converges to a constant. To see this, note that σ < σ̃(α, δ)

implies πo(2)
πp(1)

> 1, and that we have shown limno→∞
πo
πp
< 1 when α = 1. Therefore, a constant

2 ≤ n∗o < ∞ exists such that
πo(n

∗
o)

πp
≥ 1 and

πo(n
∗
o+1)
πp

≤ 1 (the market share of P firms does

not change when no changes and no is finite, because in this case, O firms have an aggregate
market share equal to zero).
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Seppä, A. (2006): “Open Source in Finnish Software Companies,” Discussion Papers
1002, The Research Institute of the Finnish Economy.

Suzumura, K. (1992): “Cooperative and Noncooperative R&D in an Oligopoly with
Spillovers,” American Economic Review, 82(5), 1307–1320.

Train, K., D. McFadden, and M. Ben-Akiva (1987): “The demand for local
telephone service: A fully discrete model of residential calling patterns and service
choices,” RAND Journal of Economics, pp. 109–123.

von Engelhardt, S. (2010): “Quality competition or quality cooperation? License-
type and the strategic nature of open source vs. closed source business models,”
Discussion Paper 034, Jena Economic Research Papers.

von Krogh, G., and E. von Hippel (2006): “The Promise of Research on Open
Source Software,” Management Science, 52(7), 975–983.

Yarrow, G. (1989): “The Kellogg’s cornflakes equilibrium and related issues,” Work-
ing paper, Hertford College, Oxford, UK.

Yi, S., and H. Shin (2000): “Endogenous formation of research coalitions with
spillovers,” International Journal of Industrial Organization, 18(2), 229–256.

32


	Introduction
	Related literature

	The model
	Technology
	Preferences
	Game and equilibrium concept

	Solution of the model
	Second stage
	First stage

	Entry
	Welfare analysis
	Government policy

	Lower differentiation for open-source products
	Conclusion

