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Abstract

In this paper, we study the short-term effect of fine particulate matter (PM 2.5) ex-

posure on respiratory Emergency Room (ER) visits in Chile, a middle-income country

with high levels of air pollution. To instrument for PM 2.5, we use wind speed at

different altitudes (pressure levels). Unlike previous papers, our data allow us to study

the impact of high pollution levels across all age groups. We find that a one microgram

per cubic meter (µg/m3) increase in PM 2.5 exposure for one day increases ER visits

for respiratory illness by 0.36 percent. The effect is positive and significant for all age

groups. Furthermore, the coefficients on government environmental alerts suggest that

avoidance behavior becomes increasingly significant across all age groups as restrictions

become more severe.
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1 Introduction

In recent decades, pollution has become a severe health hazard worldwide. Fine particulate

matter (PM 2.5) is an important source of air pollution, especially in urban areas. PM 2.5

are tiny particles with diameters smaller than 2.5 micrometers that, when inhaled, get deep

into the lungs or the bloodstream, causing various health problems such as decreased lung

function, aggravated asthma, irregular heartbeat, etc.1 In this paper, we study the short-

term effect of PM 2.5 exposure on respiratory emergency room (ER) visits across the age

distribution, using data from Chile, a middle-income country with high air pollution levels.2

The association between air pollution and health outcomes is well-documented in

medicine and epidemiology (Anenberg et al. (2018), Peel et al. (2005), Szyszkowicz et al.

(2018), Zanobetti and Schwartz (2006)). However, estimating the causal effect of pollution on

health outcomes has many well-known challenges. First, individuals with different character-

istics may sort into areas with different air quality. For example, higher-income individuals

may spend more on health care or live in less polluted areas. Second, seasonal factors increase

both pollution and the incidence of respiratory diseases. For example, because of the inten-

sive use of heating, pollution is usually higher in winter, when more infectious respiratory

diseases may lead to more ER visits. Third, measuring the true exposure to air pollution is

challenging. Air pollution is not evenly distributed within an area, and we usually do not

have precise information on where the individual lives or works. Finally, variation in air

pollution can be partially driven by human activity, which can directly affect health.

To overcome the threats to identification described above, we use air pollution data

and a rich administrative dataset on ER visits covering Chilean hospitals between 2013 and

2019. We have daily PM 2.5 measures from 80 monitors located across the country and daily

information on total ER visits by age group and cause of admission for all hospitals in the

country. Our unit of analysis is a hospital. Specifically, we match a hospital with monitors

located within a 10 km distance. We use a sample of hospitals within a short distance from a

monitor to obtain a more accurate measurement of air pollution near the hospital. Suppose

people only travel short distances for an ER visit. In that case, we also have a more accurate

measure of pollution exposure for the individual who visits the hospital for an emergency

1EPA, https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
2The World Health Organization (WHO) emphasizes the need to carefully examine the health impact

of pollution in highly contaminated economies since “extrapolation from studies in European and North
American cities might not be applicable in countries with higher levels of exposure” (WHO (2016)).
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episode.

We estimate the effect of PM 2.5 on ER visits using wind speed at different altitudes

as instruments, surface wind speed as a control variable (along with other weather variables),

and hospital-year fixed effects. Our key identifying assumption is that, once we control for

surface wind speed, wind speed at different altitudes does not have a direct effect on ER

visits (exclusion restriction) but may affect air pollution (relevant condition). In addition to

controlling for surface wind speed, we show that the correlation between wind speed at the

surface and wind speed at different altitudes is very low. Thus, it is unlikely that wind speed

at different altitudes directly affects ER visits, only affecting health through pollution.

Our results indicate that a one µg/m3 increase in PM 2.5 daily exposure increases ER

visits for respiratory illness by 0.36 percent. Furthermore, we find that this effect is present

across all age groups. We further analyze avoidance behavior using the Chilean environmen-

tal alert system comprising three categories: Alert, Pre-Emergency, and Emergency. Our

results suggest that avoidance behavior tends to intensify as the severity of the restrictions

increases. Specifically, we observe that a Pre-Emergency declaration decreases ER visits

by between 3.5 and 6.8 percent. In comparison, an Emergency declaration reduces visits

by between 7.9 (for infants) and 19.4 percent (for adults aged 65 and over). Our findings

are consistent with those of Mullins and Bharadwaj (2015), who find that environmental

alerts in the Metropolitan Region lead to fewer deaths among older adults due to respiratory

causes. In the case of ER visits, our results suggest effects across most age groups.

We also examine the effect on respiratory ER visits by cause of admission and find

that acute respiratory illnesses are the main driver of the results for all age groups. However,

chronic respiratory illnesses are also important for older people. Although we do not find

significant effects on total circulatory visits, we do find an effect on strokes which is consistent

with literature linking PM2.5 exposure with cardiovascular mortality (Gong et al., 2023;

Godzinski and Castillo, 2021) and with specific medical literature linking air pollution with

strokes, such as Brook et al. (2009), Feigin et al. (2016), Lee et al. (2018), and Xu et al.

(2022).

When we divide our sample by geographical region, we find that pollution affects

age groups differently depending on the geographic location, which may be related to the

different sources of emissions in the different regions. Our results are robust to controlling

for lags in the pollution variables, to using alternative instruments and functional forms, and

to perform the analysis at the municipality level.
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Finally, to approximate the health cost of the impact of PM 2.5 on ER, we use the

daily PM2.5 concentration in 2018 as our baseline and simulate counterfactual scenarios by

reducing the average annual PM2.5 from 22.8 μg/m3 (the average PM2.5 in 2018) to 20, 15,

10, and 5 μg/m3 (the recommended air quality level by the WHO). Our calculations suggest

a decrease between 1.2 and 7.5 percent in total ER health costs depending on the scenario,

representing between 26 and 165 million US dollars.

Our paper relates to the recent literature studying the effects of PM 2.5 on health

outcomes.3 Deryugina et al. (2019) use administrative Medicare data and daily pollution

by US counties from 1999 to 2013 to study the impact of PM 2.5 exposure on older adults

mortality, health care utilization, and medical costs. They find that an increase in PM 2.5

leads to more ER visits, hospitalizations, mortality, and inpatient spending. Ward (2015)

uses daily pollution data from Ontario municipalities and studies the impact of PM 2.5

on respiratory admissions. She finds that one standard deviation change in PM 2.5 leads

to a 3.6 percent increase in respiratory admissions for children aged 0-19 but no effect on

the adult population. Godzinski and Castillo (2021) disentangle the impact of various air

pollutants by using multiple instruments and studying their effect on emergency admissions

and mortality in the largest urban areas in France. They find that PM 2.5 has a positive

effect on cardiovascular-related mortality rate but has no significant effects on respiratory

ER admissions.

Unlike our paper, these studies consider only selected age groups (Deryugina et al.

(2019)) or find an impact only for some age groups (Godzinski and Castillo (2021)). Our

dataset allows us to identify the effect of higher pollution levels which may explain why

we find effects for all age groups. This is important because many developing countries’

pollution levels are much higher than in developed economies.

Our data come from Chile, a middle-income country with elevated levels of air pollu-

tion. According to OECD data, the mean population exposure to PM 2.5 in Chile was 23.7

micrograms per cubic meter (μg/m3) in 2019, while the average in the US was less than 10

μg/m3 and the average in the OECD was 13.9 μg/m3. When we compare our results with

Deryugina et al. (2019), who considered ER visits in the US, we find effects that are 2.5

times larger. In that sense, our paper is closer to recent literature identifying the effect of

3Furthermore, this work is related to the broad literature that studies the relationship between air pol-
lution and health outcomes (Kim (2021), Neidell (2004), Chen et al. (2013), Knittel et al. (2016), Anderson
(2020), Schlenker and Walker (2015), among others).
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pollution on mortality and life expectancy in China, a highly contaminated country (Gong

et al. 2023; Tanaka 2015; Ebenstein et al. 2015, 2017; Chen et al. 2013; Gong et al. 2023; He

et al. 2016).

Finally, our work also relates to papers that use Chilean data to identify the effect

of pollution on health outcomes, including Bharadwaj et al. (2017); Mullins and Bharadwaj

(2015); Rivera et al. (2021); Rivera (2021); Ruiz-Tagle (2019); Ruiz-Tagle and Schueftan

(2021). Additionally, our paper is close to Ruiz-Tagle (2019), which investigates the effect

of PM2.5 on ER visits in Santiago, Chile, using thermal inversions and major FIFA football

games to instrument for air pollution. He finds that one standard deviation in PM2.5

increases respiratory ER visits by 8.2 percent. However, our paper relies on a different

identification strategy and uses data from all over the country.

Our paper is organized as follows. Section 2 describes the data. Section 3 presents

the empirical model. Section 4 discusses the results. Finally, we run the robustness checks

in Section 5 and conclude in Section 6.

2 Data

2.1 Air pollution

We obtain air pollution data from the Air Quality National Information System (SINCA)

of the Chilean Ministry of Environmental Affairs.4 The SINCA collects hourly information

on different pollutants, which we use to construct average daily air pollution measures. Our

main variable of interest is fine particulate matter (PM 2.5), which is measured in micrograms

of particles per cubic meter (µg/m3). We have daily PM 2.5 information from 80 monitors

for the period 2013-2019. We use all stations collecting PM 2.5 data in 2013. Between 2013-

2019 some monitors stopped reporting, and some new monitors started reporting. Overall,

we have 56 monitors in 2013 and 80 in 2019. The monitors are in representative areas by

population or by the level of emissions. For this reason, there are more monitors in either

more-populated areas or less-populated but highly polluted areas, such as zones with high

industrial activity. Chile has 16 regions, with at least one monitor in each region. Figure

1 shows the locations of monitors across Chile (part a) and in the Santiago Metropolitan

Area (part b), which includes the capital city, Santiago, the country’s most populated area,

4Sistema de Informacion Nacional de Calidad del Aire.
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(a) All Monitors (b) Monitors in Santiago Metropolitan Area

Figure 1: Geographic distribution of Monitors

located in central Chile. Figure 2 shows the average PM 2.5 across Chile (part a) and in

the Santiago Metropolitan Area (part b). Generally, the most polluted areas with PM are

in the central part (Santiago Metropolitan Area and Valparáıso) and the south part of the

country.
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(a) All municipalities (b) Municipalities in Santiago Metropolitan Area

Figure 2: Average PM 2.5 by municipality, 2013-2019

To further understand the differences in pollution across regions in Chile, Figure 3

shows PM 2.5 emission share by source and region (ordered from north to south) in 2018-

2019.5 In the northern part of the country, the most important emission sources are road

transport and stationary sources such as fossil fuel burning power plants, mainly related

to mining activities.6 The most important emission source in the southern part of the

country is the residential burning of wood. Finally, in the central area of the country,

Santiago Metropolitan Area and Valparáıso, emissions come mainly from road transport

and residential burning of wood.

2.2 Air quality alerts

The Ministry of Environment provides data on air quality episodes. This environmental

alert system is active during the colder months in thirteen geographical areas in central-

south Chile, including the Santiago Metropolitan Area.7

5Data on emission sources by region in 2018-2019 is from the Registro de Emisiones y Transferencias
Contaminantes (RETC).

6Mining companies are located mainly in the northern region of the country.
7The system is active for a fixed period each year, but this period can vary by geographic area and

over time. For example, in 2020, the system was active between May 1 and August 31 for the Santiago
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Figure 3: PM 2.5 emission share by source and region, 2018-2019

The issuance of air quality episodes relies on a forecasting model of PM 2.5 for the

following day. When the forecasted PM 2.5 is equal to or higher than 80 µg/m3 in at least

one of the monitors located in a geographic area, the environmental authority recommends

that the local government issue an air quality episode for the following day. Depending on

the severity of the pollution, there are three different types of air quality episodes. An Alert

episode is issued when the PM 2.5 level is expected to be between 80 and 109 µg/m3; a

Pre-emergency episode is issued when the PM 2.5 level is expected to be between 110 and

169 µg/m3, and an Emergency episode is issued when the PM 2.5 level is expected to be

higher than 170 µg/m3.

Measures under the Alert category include suspension of physical education classes at

schools, restricting 40% of vehicles without catalytic converters, and a total ban on the use

of wood-burning heaters. The restrictions on vehicles without catalytic converters increase

to 60% and 80% during the Pre-emergency and Emergency episodes, respectively. Further-

more, during Emergency days, there is also a restriction of 40% on the rest of the vehicles.

On top of that, during Pre-emergency and Emergency days, the most polluting industries

cannot operate, and private cars on congested avenues cannot circulate, allowing only public

transportation.

Metropolitan Area and between April 1 and September 30 for Temuco and Padre de las Casas.
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2.3 Atmospheric Conditions

We use two types of data on atmospheric conditions: ground-level weather data and altitude-

weather data.

Ground-level weather data comes from the Center for Climate and Resilience Research

(temperature and precipitation) and SINCA (wind speed). The Center for Climate and

Resilience Research organization collects daily minimum and maximum temperatures and

precipitation from weather stations owned by the Dirección Meteorológica de Chile and the

Dirección General de Aguas. In total, 295 stations report hourly temperatures, and 816

stations report hourly precipitation. We use the hourly data to compute the daily maximum

and minimum temperature and cumulative precipitation.8 We complement these data with

wind information from 127 SINCA stations. SINCA stations report hourly information on

wind speed (in km/hour). We average the hourly wind speed to compute the daily wind

speed.

Altitude-weather data comes from NASA’s Modern-Era Retrospective Analysis for

Research and Applications, Version 2 (MERRA-2).9 MERRA-2 is a reanalysis data product

that combines observations from various sources with an atmospheric data assimilation al-

gorithm to produce a 3-dimensional, gridded dataset containing atmospheric conditions for

the planet since 1980. MERRA-2 data is provided with a spatial resolution of 5/8° longitude

by 1/2° latitude grid at 6 different times (00 GMT, 06 GMT, 12 GMT, and 18 GMT). We

obtained the east-west wind direction (u-component) and north-south wind direction (v-

component) at different atmospheric pressure levels from the M2I6NPANA file. These data

are available for 42 atmospheric pressure levels (layers), corresponding to different altitudes.

We download these data for locations with SINCA monitors measuring either PM 2.5 or

wind speed. Finally, for each layer, we convert the average u- and v-component into wind

speed and then average wind speed at the daily level.

8The data on atmospheric conditions are publicly available from http://www.cr2.cl/recursos-y-
publicaciones/bases-de-datos. We keep stations with more than two years of data. We drop daily ob-
servations with minimum temperatures below -30 degrees Celsius or above 35 degrees Celsius, maximum
temperatures below -25 degrees Celsius or above 42 degrees Celsius, or negative precipitation values. We
also drop observations where the maximum temperature is more than 3 SD above or below the mean maxi-
mum temperature in that month of the year. We did the same for minimum temperatures.

9See Gelaro et al. (2017) for a description of MERRA-2 and Bosilovich et al. (2016) for detailed information
on the available data.
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2.4 Emergency department visits

We obtain data on ER visits from Chile’s Ministry of Health.10 The dataset includes all daily

ER visits in Chile for 2013–2019 by cause, age group, and hospital. Age groups are 0-1 year,

1-4 years, 5-14 years, 15-64 years, and older than 65 years. Causes of ER visits fall into four

groups: respiratory, circulatory, external causes (traffic accidents and other external causes),

and other causes. Within the respiratory group, there are several sub-groups associated with

ICD-10 codes: acute upper respiratory infections (J00-J06), influenza (J09-J11), pneumonia

(J12-J18), acute bronchitis or bronchiolitis (J20-J21), chronic lower respiratory diseases (J40-

J46), and other respiratory causes (J22, J30-J39, J47, J60-J98).

To combine the different sources of information, we select hospitals within a 10 km

radius of a monitor as our observation unit. Using information from SINCA monitors within

a 10 km radius of a hospital, we use inverse distance weighting to compute PM 2.5 at the

hospital location. We then average maximum and minimum temperatures from stations

within 50 km from the hospital, and precipitation and wind speed (both ground-level and

altitude-weather level) from weather stations within 20 km from the hospital. By restricting

our sample to hospitals within a short distance of a monitor, we have a more accurate

measurement of air pollution near the hospital. If people do not travel long distances for

ER visits, then we also have a more accurate measurement of pollution exposure for those

individuals who visit the ER. We select the period 2013–2019 because few monitors measure

PM 2.5 before 2013.11

Table 1 shows our sample´s number of hospitals and observations by year. Since

the number of monitors increases over time, the number of hospitals we can match also

increases.12

Table 2 shows summary statistics of our sample. We have 2,618,765 observations. The

average concentration of PM 2.5 is 26.32. The average number of daily ER visits per hospital

is 27, and around 30 percent of these ER visits correspond to respiratory conditions. Of those,

77 percent correspond to acute respiratory conditions. The average maximum temperature

is 21 degrees Celsius; the average minimum temperature is 9 degrees Celsius; the average

10Data are available from the Departamento de Estad́ısticas e Información de la Salud (DEIS) at
https://deis.minsal.cl.

11Our results are robust to selecting a uniform radius of 10 or 20 km for air pollution monitors and weather
stations. See Section 5 for details.

12In Section 5, we confirm that the entry/exit of monitors does not drive our results. We estimate our
main model with a balanced sample of monitors and find similar results.
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(a) Respiratory ER visits

(b) Average daily PM 2.5 concentration

Figure 4: Air pollution and respiratory ER visits, 2013-2019
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Figure 5: Average daily PM 2.5 concentration by region

precipitation is 1.22 mm; and the average ground level wind speed is 1.63 km per hour. As

expected, wind speed at altitude increases with altitude.

Figure 4 shows the average daily respiratory ER visits (panel (a)) and the average

daily PM 2.5 (panel (b)). Both variables are highly seasonal and highly correlated with each

other. Also, pollution and respiratory ER visits are higher during the winter (June-August).

Figure 5 shows the average daily mean across regions. The central and southern regions

show higher levels of pollution, reaching a daily mean close to 60 µg/m3. Note, however,

that even during the summer, when pollution is lower, the daily mean is higher than the

WHO air quality recommendation for PM 2.5, which is an annual average daily mean of 5

µg/m3 and a 24 hours-concentration of 15 µg/m3. So, PM 2.5 is above what is considered

healthy for most of the year across regions.

Finally, Table 3 shows the overall variation in PM 2.5 and further decomposed in

the between hospital-year-month and the within hospital-year-month variation. As observed

from the table, the within-variation is similar to the between-variation. Enough within-

variation is important for our estimation strategy since we exploit the daily PM 2.5 variation

within each hospital, as we explain in detail in the next section.
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2.5 Average health costs of ER visits

To estimate the average health cost associated with an ER visit, we use claims data (Presta-

ciones Bonificadas) from private insurance for 2018.13 Claims data provides billing informa-

tion for each procedure performed by a health provider. To define a health episode, we use

the variable programa medico that groups various procedures in the same bill.

To calculate the average cost of an ER visit, we identify health episodes that include

a procedure code for an ER visit and sum up all the procedures in the episode. We then

computed the average episode cost for different age groups. However, we cannot distin-

guish between respiratory and non-respiratory ER visits, so we approximate respiratory ER

visits using claims data only from the second and third quarters when most of respiratory

ER visits occur. Additionally, we exclude health episodes with procedure codes related to

non-respiratory conditions, such as x-rays of specific body parts, consultations with clinical

psychologists, blood lipase tests, certain ultrasounds, and VDRL tests.

Figure 6 shows the average cost of an ER visit for each age group. The average cost

of an ER visit is 336,000 Chilean pesos (equivalent to 491 US dollars) for children aged

0-5, 186,000 Chilean pesos (equivalent to 272 US dollars) for children aged 6-10, and then

increasing with age from 166,000 Chilean pesos (equivalent to 243 US dollars) for children

aged 11-15 to 383,000 Chilean pesos (equivalent to 560 US dollars) for individuals aged 60-

65, and 1,000,000 Chilean pesos (equivalent to 1,500 US dollars) for those over 65 years old.

Our measure of ER cost is comprehensive, including the ER visit, other procedures, and, if

necessary, hospitalization expenses.

13These data are publicly available at https://www.supersalud.gob.cl/documentacion/666/w3-
propertyvalue-6988.html. Unfortunately, similar data are not available for public insurance.
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Figure 6: Average health cost for each ER visit by age group, 2018.

3 Empirical Strategy

We estimate the short-term effect of PM 2.5 exposure on respiratory ER visits using the

following model:

Yhadmy = β0 + β1PM2.5hdmy +
∑
j

δjAlertjhdmy +X ′
hdmyγ + αa + αhy + αdmy + ϵhadmy, (1)

where Yhadmy is the logarithm of respiratory ER visits for age group a in hospital h on

day d in month m and year y; PM2.5hdmy is the PM2.5 in hospital h on dmy; Alertjhdmy are

dummy variables indicating if the government issues an environmental Alert, Pre-emergency,

or Emergency warning for air pollution in the area of hospital h on dmy; Xhdmy are weather

variables (daily max and min temperature and precipitation) in hospital h on dmy; αa is an

age group fixed effect; αhy is an hospital-year fixed effect; αdmy is an day-month-year fixed

effect; and ϵhadmy captures unobservables that affect the outcome variable. Our parameter

of interest is β1, the coefficient on PM 2.5.

Our main specification control for alerts as they may cause avoidance behavior (Nei-
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dell (2009); Moretti and Neidell (2011)) or change the pollution level by triggering mitigation

actions (Rivera, 2021).

OLS estimates of equation (1) could be biased if there is measurement error in expo-

sure to PM 2.5, or if the daily allocation of PM 2.5 within a hospital-year cell is not as good

as randomly assigned. There could be measurement error in exposure to PM 2.5 because our

daily measures of PM 2.5 levels at the monitor location could differ from the actual exposure

of individuals who visit the ER. To minimize this source of measurement error, we choose

hospitals located within a 10 km radius from a monitor. Because we focus on emergency

episodes, we expect that the place of residence or work should be a short distance from the

hospital.

Given the possible endogeneity of the allocation of PM 2.5 within a hospital-year cell,

we use wind speed at different altitudes to instrument the level of PM 2.5, using surface wind

speed as a control variable. As described above, we have data for atmospheric conditions

for a vertical grid parametrizing altitude through 42 different pressure levels (layers). The

layers start at 1000 hPa (approximately 100 meters above sea level) and end at 0.1 hPa

(approximately 37,000 meters above sea level). We choose only 3 layers to minimize problems

with many instruments: 12 (725 hPa), 16 (550 hPa), and 18 (450 hPa).14 We start with

layer 12 at 725 hPa (approximately 2,500 meters) because there were several missing values

for the layers below layer 12 (the average altitude in Chile is 1,800 meters) and also to avoid

potential collinearity with surface wind speed.15

Our instrument satisfies the exclusion restriction because we use surface wind speed as

a control variable to capture the direct effect that wind speed may have on health. Therefore,

wind speed at different altitudes is unlikely to have a direct effect on ER visits and may only

affect health through the level of pollution. We expect some correlation between wind speed

at the ground and altitude wind, and for this reason, it is crucial to control for surface

wind speed in a flexible way. The relevance condition requires that altitude wind speed is

correlated with PM 2.5 once we control for surface wind speed.

The specification for the first stage of the IV is

14When we estimate the model with all the layers between 12 and 18, we find similar results.
15Other papers using similar instruments are, for example, Schwartz et al. (2017) or Godzinski and Castillo

(2021).

15



PM2.5hdmy =π1wind speed
12
hdmy + π2wind speed

16
hdmy + π3wind speed

18
hdmy (2)

+
∑
j

δjAlertjhdmy +X ′
hdmyθ + αa + αhmy + αdmy + ϵhadmy,

where wind speed12hdmy, wind speed
16
hdmy and wind speed18hdmyare the average daily wind

speed in hospital h on date dmy measured at three different pressure levels: 725hPa (layer

12), 550hPa (layer 16), and 450hPa (layer 20).

Although we control for surface wind speed, a high correlation between altitude and

surface wind speed may present two problems. Firstly, altitude wind speed could capture

some of the surface wind speed that the ground monitor is unable to measure, potentially

compromising the exclusion restriction for our instrument. This is more likely if altitude

and surface wind speed are highly correlated. Secondly, if altitude and surface wind speed

are highly correlated, the relevance condition may be less likely to be satisfied, as there may

not be enough variation in altitude wind speed once we have controlled for surface wind

speed.To alleviate these concerns about our instrument, we have analyzed the correlation

between surface and altitude wind speed at different levels of altitude. Table 4 presents

the correlation matrix between surface wind speed and altitude wind speed at the three

levels examined in the paper: 25 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer

20). The correlation between surface wind speed and altitude wind speed is low and even

becomes negative at high altitudes. Specifically, the correlation between surface wind speed

and altitude wind speed at layer 12 is positive (0.08) but shifts to negative at layer 16 (-0.02).

In fact, surface wind speed does not exhibit a significant correlation with the various levels

of altitude wind speed, which instead appear to be strongly interrelated among themselves.

Furthermore, in Section 5, we show that our results are robust to different functional forms

for surface wind speed.

To further enhance the credibility of our instruments, we also show in Section 5 that

our results are robust to the choice of specific altitude wind speed layers and alternative

instruments used in the literature, such as inverse planetary boundary layer height (IPBLH)

and thermal inversion.

We estimate equations (1) and (2) clustering the standard errors at the hospital level.
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4 Results

Table 5 shows the OLS (columns (1) and (2)) and IV (columns (3) and (4)) estimates of the

impact of PM 2.5 on respiratory ER visits. Columns (1) and (3) show the estimates without

controlling for alerts, and columns (2) and (4) show our preferred specification, which includes

dummies for the three alert categories. We estimate that an increase in one µg/m3 in PM

2.5 increases respiratory ER visits from 0.36 to 0.38 percentage points. These results are

twelve times larger than the OLS estimates.16 The estimated effect is not negligible: a one

standard deviation increase in PM 2.5 (around 24 µg/m3) increases respiratory ER visits

by 8 percentage points. Moreover, the coefficients of the three categories of environmental

alerts suggest a negative impact of avoidance behavior on ER visits which increases with

the severity of the restrictions. The test of weak instruments in the first stage has an F-

stat of 272.9, showing that the instruments satisfy the relevance condition necessary for

identification in the IV estimation.

Using our preferred specification, we explore heterogeneous effects by age group in

Figure 7 and Table 6. An increase in PM 2.5 causes an increase in respiratory ER visits in

all age groups, including the 15-64 years-old population. Coefficients across age groups are

close enough to be statistically indistinguishable. We find that for the 15-64 age group, a

one µg/m3 increase in PM 2.5 leads to a 0.34 percent increase in respiratory ER visits. The

middle-aged population constitutes the largest group, so any positive effect on respiratory

ER visits also has a potentially large impact on the health system. A plausible explanation is

that, at higher pollution levels, every age group is affected by a higher PM 2.5 concentration.

As observed in the overall population, the results by age suggest that avoidance

behavior tends to intensify across all age groups as the severity of the restrictions increases.

Specifically, we observe that a Pre-emergency declaration decreases ER visits by between 3.5

and 6.8 percent, while an environmental Emergency declaration reduces visits by between

7.9 (for infants, although not statistically significant) and 19.4 percent (for adults age 65

and over). Note that the measures have similar effects on all age groups, except for infants

under one year old and adults older than 65, who experience slightly larger effects.

The lack of significant results in infants could be due to caregivers not exposing

newborns to severe weather conditions, regardless of the pollution. Additionally, the greater

flexibility of older adults to stay at home on high-pollution days may explain why they are

16Deryugina et al. (2019) and Ward (2015) obtain a similar upward correction in their IV estimates.
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more susceptible to the alert system. Moreover, Alert days have a marginally significant

impact on children aged 5-14, possibly due to the suspension of physical education classes

at schools. This last result is consistent with the findings of Mullins and Bharadwaj (2015),

which indicate that environmental alerts in the Metropolitan Region reduce respiratory-

related deaths among older adults.

Figure 7: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits, by age group

Table 7 explores the effect of PM 2.5 on different types of respiratory ER visits. We

split total respiratory ER visits into acute (J00-J21), chronic (J40-J46), and other respiratory

conditions. The effects of PM 2.5 on acute respiratory ER visits are positive and significant

for all age groups (Panel B). However, chronic respiratory ER visits seem to be affected by

daily variations on pollution only for people older than 65 (and marginally for children aged

5-14) and not for the other age groups (Panel C).

Table 8 reports the results for ER visits due to different types of ER visits: respiratory

illnesses (columns (1)), traffic accidents (column (2)), and circulatory causes (column (3)).

Column (2) of Table 8 shows that there is not a significant effect of PM 2.5 on

ER visits due to traffic accidents. Our results contrast those of Sager (2019), who finds a

positive impact of PM 2.5 on the number of road traffic accidents in the United Kingdom.

One possible explanation for the disparate results in our and Sager’s paper is that Sager

(2019) studies the effect of PM 2.5 concentration on road traffic accidents involving personal
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injury reported to the police in the United Kingdom, while we consider people who visited

the ER after a traffic accident in Chile. If car accidents that require an ER visit are likely to

be reported to the police, our sample is more selected than the one in Sager (2019). Thus,

one plausible explanation is that pollution does not impact car accidents with more severe

consequences. In this sense, our results are similar to Ward (2015), who finds no effect of

PM 2.5 exposure on hospital admissions due to external accidents in Canada. Moreover, as

Sager (2019) acknowledges, extrapolating his results to other countries with varying road

networks, traffic policies, automotive technologies, and weather conditions is challenging.

Therefore, these national differences might account for the divergent results between the UK

and Chile.

Column (3) of Table 8 shows that there is not a significant effect of PM 2.5 on ER

visits due to circulatory causes. Previous studies, such as Gong et al. (2023) and Godzinski

and Castillo (2021) find evidence that PM2.5 exposure increases cardiovascular mortality

but its effect on ER visits or admissions is less clear. In particular, using data from France,

Godzinski and Castillo (2021) find a significant and positive effect of PM2.5 on cardiovascular

mortality, but they do not find any effect on cardiovascular emergency admissions. In their

paper, they explain that the impact of PM 2.5 on cardiovascular events could be acute

enough to lead directly to death without an ER visit, mainly if it concerns older adults.

That could explain why we have not found effects on total circulatory ER admissions.

We also study whether there is an impact on different circulatory ER visits, including

myocardial infarction (MI), stroke, hypertensive crisis (HTC), arrhythmia, and other circu-

latory causes.Table 9 presents these results. Our findings reveal a significant effect of PM2.5

on strokes, which is consistent with the results of Brook et al. (2009). In their randomized

controlled trial, treatment groups were exposed to fine particles and particles plus ozone.

They find that particles (not ozone) increased the diastolic blood pressure of treated indi-

viduals. According to the authors, the increase in blood pressure explains the association

between PM2.5 and strokes. Our result is also consistent with other recent papers from the

medical literature that also link air pollution with strokes (Feigin et al. (2016), Lee et al.

(2018), and Xu et al. (2022)).

Given the difference between pollution levels in different parts of the country, in

Table 10 and Figure 8, we show the results when we divide our national sample into three

geographical regions (North, South, and Santiago Metropolitan). In the North region, we

find a positive and significant effect for the population between 1-4 and 15-64 years old. The

19



Figure 8: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits by region

difference in the results by geographical region may be related to the heterogeneity in sources

of pollution (see Figure 3). Notice that, for example, in the North, where mining activities

are important, we only observe impact in older children and adults, but not in older adults

or young children. However, in the Santiago Metropolitan Area, where road transport is the

dominant source, the effect is concentrated in young children (age 0-5). Finally, notice that

in the South, where the primary source of pollution is residential wood burning, and the

average pollution level is the highest, we observe effects for all age groups, even though they

are lower than in the other cases.

Health costs associated with the impact of PM 2.5 on ER visits

In this section, we approximate the health cost of the impact of PM 2.5 on ER visits. We use

the daily PM2.5 concentration in 2018 as our baseline, and we simulate various counterfactual

scenarios by reducing the average annual PM2.5 from 22.8 μg/m3 (the average PM2.5 in

2018) to 20, 15, 10, and 5 μg/m3 (the last number is the recommended air quality level by

the WHO). Figure 9 shows the daily PM 2.5 concentration for the baseline and counterfactual

scenarios. We scale each daily observation in the baseline by the same factor to obtain the

average annual PM2.5 in the counterfactual scenario while preserving the seasonal variation
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in the data.

Figure 9: PM 2.5 concentration: 2018 and counterfactual scenarios

To determine the impact of reducing PM 2.5 on ER healthcare costs in the different

scenarios, we simulate the effect of PM 2.5 reduction on ER visits for each age group and

then aggregate the effects using the average health costs for each group, as follows:

∆Health costs =
∑
a

Avg health costa

[∑
(β̂a × ER visitsat)×∆PM2.5t

]
,

where ∆PM2.5t denotes the change in PM 2.5 on date t in a counterfactual scenario,

ER visitsat is the ER visits for age group a on date t in the baseline, β̂a is the estimated

impact for age group a in the main specification, and Avg health costa is the average ER

cost for age group a. .

Figures 10 and 11 show each counterfactual scenario’s ER visit and total ER health

cost changes. In the 20 µg/m3 PM 2.5 scenario, ER visits decreased by 57,000, while in the

5 µg/m3 PM 2.5 scenario, they decreased by 363,000. ER health costs decreased by 18,000

million Chilean pesos (equivalent to 26 million US dollars) in the 20 µg/m3 PM 2.5 scenario

and by 113,000 million Chilean pesos (equivalent to 165 million US dollars) in the 5 µg/m3

PM 2.5 scenario. These are substantial effects, representing a decrease between 1.2 and 7.5

percent in total ER health costs.

21



Figure 10: Change in ER visits for the different counterfactual scenarios

Figure 11: Change in ER health costs for the different counterfactual scenarios
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5 Robustness Checks

In this section, we run several robustness exercises to evaluate the sensitivity of our results.

First, to address potential concerns that the validity of our IV specification may de-

pend on the functional form for wind speed or the choice of altitude wind speed layers, we

show that our results are robust to these decisions in Table 11. This table shows the IV

estimates (Panel A) and first-stage regression results (Panel B) for different specifications

using linear and quadratic forms of surface wind speed and different combinations of our

three altitude wind speed instruments. Column (1) controls for several indicators for dif-

ferent ranges of surface wind speed (our baseline model), column (2) controls for linear and

quadratic forms of surface wind speed, columns (3) to (5) maintain the same functional form

for surface wind speed but each column uses only one layer of altitude wind speed as an

instrument (layer 12, 16 and 20 respectively). We find that our results are robust to changes

in the functional form for surface wind speed (column (1) versus column (2)) or using dif-

ferent layers of altitude wind speed as instruments (column (2) versus columns (3), (4) and

(5)). When we use only level 16 wind speed as the instrument, which has a weak negative

correlation with surface wind speed (-0.02), the coefficient of PM 2.5 remains practically

unchanged. Furthermore, the coefficient of surface wind speed is stable even when level

12 wind speed, which is positively correlated with surface wind speed, is used as the only

instrument.

Second, to check whether our results are sensitive to the instruments chosen, we use

the inverse PBLH and thermal inversion (an indicator if the temperature difference between

the two pressure levels closest to the ground is positive) as alternative instruments. Tables

12 and 13 compare our main results with an alternative specification using thermal inversion

and inverse PBLH (at hours 0, 6, and 18) as instruments for PM 2.5. The results are generally

similar, although less precise for infants younger than one-year-old and insignificant for adults

aged 65 and over. These findings give additional credibility to our instruments. Moreover,

we prefer to use altitude wind speed because there is a gain in precision compared to these

alternative instruments.

Third, in our empirical specification, we match hospitals to monitors within a 10

km distance to have a more accurate measure of pollution exposure. However, most of

the previous literature studies the impact of pollution at the county level. Therefore, to

facilitate comparing our results, we estimate our preferred specification at this level with
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the respiratory ER visit rate per million residents as the dependent variable. Tables 14 and

15 show the results of this exercise. In Table 14, we find that an increase in one µg/m3 in

PM 2.5 increases respiratory ER visits by 4.48 per million (0.16 percentage points), sizably

lower than those in our main specification (0.36 percentage points). However, we find a

larger impact than Deryugina et al. (2019), who find that an increase of one µg/m3 in PM

2.5 increases ER visits by 2.69 per million people in the US (0.07 percentage points). To

make the comparison more accurate, we should focus on people aged 65 and over (Table

15) where we find an increase of 4.97 visits per million people, making the difference even

larger. This difference might be due to the higher level of pollution in our data, which

leads to bigger effects. Table 15 confirms that, with this alternative specification, we find

a significant impact for all ages. In Tables A.1, A.2 and A.3 in the Online Appendix, we

repeat this analysis with the logarithm of respiratory ER visits as the dependent variable

and without weights, with similar results.

Fourth, to provide robustness in our choice of the dependent variable, we compared it

to three alternative approaches: the inverse hyperbolic sine transformation, Poisson pseudo

maximum likelihood (PPML) regression, and the ratio of emergency room (ER) visits to the

hospital-level population. Table 16 presents alternative specifications where we calculated

the effect as a percentage of the mean to facilitate comparison between the different options.

Our analysis suggests that the choice of the dependent variable has no significant impact on

the results.

Fifth, we also study the cumulative effects of pollution. Table 17 shows the results

when we add two lags of the PM 2.5 variable. The main result remains robust, and the

lags do not seem significant to explain respiratory ER on the same day. Table 18 shows the

results when we use 3-day average PM 2.5 as the measure for pollution. The main result

remains robust although lower in magnitude.

Finally, we show that our results are robust to using a balanced panel of monitors

using data from the 52 monitors that reported PM 2.5 throughout the entire 2013-2019

period. Our results in Tables A.4 and A.5 in the Online Appendix, are consistent with those

from our baseline specification. Moreover, in Tables A.6 and A.7 in the Online Appendix, we

present a robustness analysis to evaluate the sensitivity, of our results to the 10 km radius

between hospitals and pollution monitors we used in the paper. We found that reducing

this distance from the benchmark of 10 km to 3 km led to a halving of the observations.

However, this change did not significantly alter the results.
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Figure 12: Effect of PM 2.5 on respiratory ER visits. Different specifications.

Figure 12 summarizes the results for the specifications described above and those in

the Online Appendix. The effects show that an increase of one µg/m3 in PM 2.5 increases

respiratory ER visits from .18 to .42, depending on the specification. These effects are,

however, higher than in the related literature.

6 Conclusion

Pollution has become a hazard worldwide, affecting the health of the population. Studying

the causal relationship between pollution and different health outcomes is important, as

it makes it possible to address the true costs of contamination and, therefore, to design

optimal environmental policies. One important source of pollution is particulate matter.

PM 2.5 are tiny particulates that, when inhaled, can cause various health problems. In this

paper, we study the impact of PM 2.5 on respiratory ER visits. We use data from Chile, a

middle-income, highly polluted country. Unlike the approach in some previous papers in the

literature, this allows us to study the impact of PM 2.5 over a wide range of pollution levels.

When pollution is high, it may affect not only sensitive groups but the whole population.

Our detailed dataset allows us to control for some well-documented problems in this

literature: sorting of individuals, seasonal factors, measurement error due to the unknown
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true exposure level and avoidance behavior, and endogeneity of air pollution. Our identifi-

cation strategy uses wind speed at different altitudes to instrument PM 2.5, using surface

wind speed as a control variable to instrument air pollution using altitude wind speed. Our

instrument satisfies the exclusion restriction because we use surface wind speed as a control

variable to capture the direct effect that wind speed may have on health.

We find that an increase of one µg/m3 in PM 2.5 increases respiratory ER visits from

0.32 to 0.36 percentage points, a bigger effect than previous work on less polluted countries.

Futhermore, we find similar effects for all age groups. In particular, the impact of PM 2.5 on

the 15-64 years old group is similar to the more sensitive groups like children and the older

adults (65+).

We also analyze potential avoidance behavior using the Chilean environmental alert

system, comprising three categories: Alert, Pre-Emergency, and Emergency. Our results

suggest that avoidance behavior tends to intensify across all age groups as the severity of

the restrictions increases. Specifically, we find that a Pre-Emergency declaration decreases

ER visits by between 3.5 and 6.8 percentage points. An Emergency declaration has an

even greater effect, reducing visits by between 7.9 (although not statistically significant for

infants) and 19.4 percentage points for adults aged 65 and over.
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Appendix: Tables

Table 1: Number of hospitals by year

Year Number of Hospitals Number of Observations

2013 204 327,740
2014 209 357,565
2015 222 367,425
2016 240 392,815
2017 240 413,685
2018 242 411,715
2019 244 347,820

Note: This table reports the number of hopitals and observations by
year for the estimating sample.
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Table 2: Summary statistics, 2013–2019

Variables Mean s.d. Min Max

Pollution

PM 2.5 (µg / m3) 26.32 22.77 0.00 739.35

ER visits

Respiratory 8.16 9.85 0.00 1103.00

Acute respiratory (J00-J21) 6.81 8.64 0.00 1103.00

Chronic respiratory (J40-J46) 0.44 1.22 0.00 67.00

Other respiratory 0.91 3.05 0.00 280.00

Circulatory 0.55 1.69 0.00 220.00

Traffic accidents 0.14 1.15 0.00 105.00

Weather

Max. Daily Temp. (Celsius) 20.92 6.36 -2.92 41.19

Min. Daily Temp. (Celsius) 8.96 4.07 -11.20 23.73

Daily precipitation (mm) 1.22 4.96 0.00 108.40

Wind Speed (km/hour) 1.63 0.90 0.00 13.52

Wind Speed (layer 12) (km/hour) 7.97 4.96 0.75 38.65

Wind Speed (layer 16) (km/hour) 14.60 7.00 0.51 48.52

Wind Speed (layer 20) (km/hour) 26.46 11.67 0.77 75.66

Air quality alerts

Alert 0.053 0.225 0.000 1.000

Preemergency 0.017 0.127 0.000 1.000

Emergency 0.002 0.046 0.000 1.000

Observations 2,618,765

Note: This table reports descriptive statistics for the estimating sample. Unit of observation
is hospital-day. Altitude wind speed is measured at three different pressure levels: 725 hPa
(layer 12), 550 hPa (layer 16), and 450 hPa (layer 20).
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Table 3: Overall, between and within variation in PM 2.5, 2013–2019

Mean Std Dev Min Max N/n/T-bar

PM 2.5 (µg / m3) overall 26.32 22.77 0.00 739.35 523,753
between . 16.74 0.00 376.55 17,798
within . 15.77 -144.91 723.62 29

Note: This table reports the variation in PM 2.5 for the estimating sample. The ”be-
tween” variation is the variation across hospital-month-year, and the ”within” variation is
the variation within a hospital-month-year. N is total number of hospital-year-month-day
observations (overall variation), n is the total number of hospital-year-month observations
(between variation) and T-bar is the average number of observations by a hospital in a month
(within variation).

Table 4: Correlation matrix for surface and altitude wind

Surface wind speed Level 12 Level 16 Level 20

Surface wind speed 1.00
Level 12 0.08∗∗∗ 1.00
Level 16 -0.02∗∗∗ 0.82∗∗∗ 1.00
Level 20 -0.08∗∗∗ 0.63∗∗∗ 0.86∗∗∗ 1.00
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Table 5: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 (µg / m3) 0.0002*** 0.0002** 0.0036*** 0.0038***
[0.0001] [0.0001] [0.0003] [0.0004]

Alert 0.0243*** -0.0120
[0.0053] [0.0084]

Pre-emergency 0.0197** -0.0545***
[0.0077] [0.0136]

Emergency 0.0368** -0.1440***
[0.0152] [0.0295]

F stat PM 2.5 (weak inst.) 272.9 207.3
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,618,765 2,618,765 2,618,765 2,618,765

Note: This table reports OLS and IV estimates of equation (1). The dependent variable is the
logarithm of respiratory ER visits. Alert, Pre-emergency and Emergency are dummy variables
indicating if the government issues an alert, pre-emergency, or emergency warning for air pollution.
The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12),
550 hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-year, day-month-
year and age group fixed effects, and flexible controls for temperatures (maximum and minimum),
precipitation, and surface wind speed. The test for weak instruments uses the F statistics and p-
values from Sanderson and Windmeijer (2016). Standard errors, clustered by hospital, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 6: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits, by age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5 (µg / m3) 0.0036*** 0.0041*** 0.0041*** 0.0034*** 0.0041***
[0.0008] [0.0007] [0.0006] [0.0005] [0.0006]

Alert -0.0195 -0.0181 -0.0179* -0.0040 -0.0007
[0.0124] [0.0115] [0.0105] [0.0099] [0.0107]

Pre-emergency -0.0345* -0.0509*** -0.0642*** -0.0552*** -0.0679***
[0.0205] [0.0195] [0.0187] [0.0154] [0.0187]

Emergency -0.0793 -0.1495*** -0.1290*** -0.1684*** -0.1939***
[0.0538] [0.0438] [0.0396] [0.0358] [0.0379]

Mean DV 3.236 9.043 8.248 17.335 2.962
Observations 523,637 523,637 523,637 523,637 523,637

Note: This table reports IV estimates of equation (1) by age group. The dependent variable is
the logarithm of respiratory ER visits in the corresponding age group. Alert, Pre-emergency and
Emergency are dummy variables indicating if the government issues an alert, pre-emergency, or
emergency warning for air pollution. The instruments for PM2.5 are wind speed at three different
pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications
include hospital-month and day-month-year fixed effects, controls fpr environmental alerts, and
flexible controls for temperatures (maximum and minimum), precipitation, and surface wind speed.
The test for weak instruments uses the F statistics and p-values from Sanderson and Windmeijer
(2016). Standard errors, clustered by hospital, are reported in brackets. Significance levels are
indicated by ∗ < .1, ** < .05, *** < .01.
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Table 7: IV estimates of the effect of PM 2.5 on different types of respiratory ER visits, by
age group

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: All respiratory (J00-J99)

PM 2.5 (µg / m3) 0.0036*** 0.0041*** 0.0041*** 0.0034*** 0.0041***
[0.0008] [0.0007] [0.0006] [0.0005] [0.0006]

Mean DV 3.236 9.043 8.248 17.335 2.962
Observations 523,637 523,637 523,637 523,637 523,637

Panel B: Acute respiratory (J00-J21)

PM 2.5 (µg / m3) 0.0034*** 0.0040*** 0.0040*** 0.0033*** 0.0040***
[0.0007] [0.0007] [0.0007] [0.0006] [0.0006]

Mean DV 2.652 7.654 7.061 14.502 2.165
Observations 523,637 523,637 523,637 523,637 523,637

Panel C: Chronic respiratory (J40-J46)

PM 2.5 (µg / m3) 0.0003 -0.0004 0.0005 0.0007 0.0010**
[0.0005] [0.0006] [0.0004] [0.0006] [0.0004]

Mean DV 0.291 0.566 0.288 0.679 0.400
Observations 523,637 523,637 523,637 523,637 523,637

Panel D: Other respiratory

PM 2.5 (µg / m3) 0.0004 0.0004 0.0005 0.0002 0.0005
[0.0003] [0.0005] [0.0006] [0.0007] [0.0004]

Mean DV 0.294 0.822 0.900 2.154 0.398
Observations 523,637 523,637 523,637 523,637 523,637

Note: This table reports IV estimates of equation (1) for different types of respiratory ER visits by
age group. The dependent variable is the logarithm of respiratory ER visits in the corresponding
age group. The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa
(layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital and day-
month-year fixed effects, controls for environmental alerts, and flexible controls for temperatures
(maximum and minimum), precipitation, and surface wind speed. The test for weak instruments
uses the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered
by hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 8: IV estimates of the effect of PM 2.5 on (log) ER visits by ER type

(1) (2) (3)
Respiratory Traffic accidents Circulatory

PM 2.5 (µg / m3) 0.0038*** 0.0001 -0.0000
[0.0004] [0.0001] [0.0001]

Alert -0.0120 -0.0037** -0.0014
[0.0084] [0.0016] [0.0022]

Pre-emergency -0.0545*** -0.0036 0.0002
[0.0136] [0.0031] [0.0039]

Emergency -0.1440*** -0.0206 -0.0058
[0.0295] [0.0144] [0.0094]

F stat PM 2.5 (weak inst.) 207.3 207.3 207.3
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000
Mean DV 8.165 0.144 0.551
Observations 2,618,765 2,618,765 2,618,765

Note: This table reports IV estimates of equation (1) for different types of ER visits. The dependent
variable is the logarithm of ER visits for the corresponding ER type. Alert, Pre-emergency and Emergency
are dummy variables indicating if the government issues an alert, pre-emergency, or emergency warning
for air pollution. The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa
(layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-month and day-
month-year fixed effects, and flexible controls for temperatures (maximum and minimum), precipitation,
and surface wind speed. The test for weak instruments uses the F statistics and p-values from Sanderson
and Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Significance
levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 9: IV estimates of the effect of PM 2.5 on different types of circulatory ER visits

(1) (2) (3) (4) (5)
MI Stroke HTC Arrh. Other

PM 2.5 (µg / m3) 0.0001 0.0001** -0.0001 0.0000 -0.0000
[0.0001] [0.0001] [0.0001] [0.0001] [0.0001]

Alert -0.0009 -0.0022** 0.0017 -0.0003 -0.0007
[0.0007] [0.0010] [0.0018] [0.0008] [0.0018]

Pre-emergency -0.0028** -0.0018 0.0026 -0.0009 0.0019
[0.0012] [0.0015] [0.0031] [0.0016] [0.0031]

Emergency -0.0033 -0.0092** 0.0059 -0.0022 -0.0033
[0.0035] [0.0047] [0.0072] [0.0038] [0.0077]

F stat PM 2.5 (weak inst.) 207.3 207.3 207.3 207.3 207.3
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 0.022 0.061 0.216 0.036 0.216
Observations 2,618,765 2,618,765 2,618,765 2,618,765 2,618,765

Note: This table reports IV estimates of equation (1) for different types of circulatory ER visits. The
dependent variable is the logarithm of ER visits for the corresponding circulatory ER type: myocar-
dial infarction (MI), stroke, hypertensive crisis (HTC), arrhythmia, or other circulatory causes. Alert,
Pre-emergency and Emergency are dummy variables indicating if the government issues an alert, pre-
emergency, or emergency warning for air pollution. The instruments for PM2.5 are wind speed at three
different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifica-
tions include hospital-month and day-month-year fixed effects, and flexible controls for temperatures
(maximum and minimum), precipitation, and surface wind speed. The test for weak instruments uses
the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by
hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 10: IV estimates of the effect of PM 2.5 on (log) respiratory ER visits by region

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Panel A: North

PM 2.5 (µg / m3) 0.0010 -0.0000 0.0095*** 0.0090*** 0.0033
[0.0028] [0.0034] [0.0023] [0.0027] [0.0029]

F stat PM 2.5 (weak inst.) 716.3 716.3 716.3 716.3 716.3
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.309 8.958 8.611 14.769 2.398
Observations 49,225 49,225 49,225 49,225 49,225

Panel B: Metropolitan region

PM 2.5 (µg / m3) 0.0128*** 0.0093** -0.0001 0.0018 0.0015
[0.0045] [0.0038] [0.0064] [0.0033] [0.0035]

F stat PM 2.5 (weak inst.) 210.9 210.9 210.9 210.9 210.9
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.296 9.134 8.098 18.158 2.983
Observations 284,163 284,163 284,163 284,163 284,163

Panel C: South

PM 2.5 (µg / m3) 0.0060*** 0.0043*** 0.0026** 0.0018** 0.0037***
[0.0011] [0.0011] [0.0011] [0.0008] [0.0011]

F stat PM 2.5 (weak inst.) 47.0 47.0 47.0 47.0 47.0
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.127 8.929 8.378 16.770 3.077
Observations 190,126 190,126 190,126 190,126 190,126

Note: This table reports OLS and IV estimates of equation (1) by different regions by age group.
North includes regions located to the north of the Metropolitan Region; South includes regions
located to the south of the Metropolitan Region. The dependent variable is the logarithm of respi-
ratory ER visits. The instruments for PM2.5 are wind speed at three different pressure levels: 725
hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-year,
day-month-year and age group fixed effects, controls for environmental alerts, and flexible controls
for temperatures (maximum and minimum), precipitation, and surface wind speed. The test for
weak instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016). Stan-
dard errors, clustered by hospital, are reported in brackets. Significance levels are indicated by ∗
< .1, ** < .05, *** < .01.
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Table 11: Effect of PM 2.5 on (log) respiratory ER visits. Robustness to different functional
forms for surface wind speed and different instruments

(1) (2) (3) (4) (5)

Panel A: IV regression

PM 2.5 (µg / m3) 0.0038*** 0.0038*** 0.0034*** 0.0037*** 0.0041***
[0.0004] [0.0004] [0.0006] [0.0004] [0.0005]

Surface wind speed 0.0112*** 0.0089** 0.0104*** 0.0125***
[0.0034] [0.0037] [0.0033] [0.0039]

Wind-Precip.-Temp. Interact. Yes No No No No

Precip -Temp. Interactions No Yes Yes Yes Yes

F stat PM 2.5 (weak inst.) 207.3 239.1 169.9 697.2 731.6
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165 8.165

Panel B: First Stage

Wind speed level 12 -0.1314*** -0.0167 -0.4184***
[0.0488] [0.0540] [0.0321]

Wind speed level 16 -0.2020*** -0.2587*** -0.4045***
[0.0184] [0.0204] [0.0153]

Wind speed level 20 -0.0984*** -0.1066*** -0.2274***
[0.0097] [0.0106] [0.0084]

Surface wind speed -5.5363*** -5.4970*** -5.5275*** -5.6200***
[0.4379] [0.4335] [0.4419] [0.4492]

Wind-Precip.-Temp. Interact. Yes No No No No

Precip. - Temp. Interactions No Yes Yes Yes Yes

Mean DV 26.316 26.316 26.316 26.316 26.316
Observations 2,618,765 2,618,765 2,618,765 2,618,765 2,618,765

Note: This table reports IV and first-stage estimates of equation (1). The dependent variable is the log of
respiratory ER visits. All specifications include hospital-year, day-month-year and age group fixed effects, controls
for enviromental alerts, and flexible controls for temperatures (maximum and minimum), precipitation, and surface
wind speed. Alert is a dummy variable indicating if the government issues an alert, pre-emergency, or emergency
warning for air pollution. The test for weak instruments uses the F statistics and p-values from Sanderson and
Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Significance levels are
indicated by ∗ < .1, ** < .05, *** < .01.
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Table 12: Effect of PM 2.5 on (log) respiratory ER visits. Different instruments

(1) (2)
Wind IPBLH+TI

PM 2.5 (µg / m3) 0.0038*** 0.0032***
[0.0004] [0.0012]

Alert -0.0120 -0.0058
[0.0084] [0.0126]

Pre-emergency -0.0545*** -0.0418*
[0.0136] [0.0253]

Emergency -0.1440*** -0.1131*
[0.0295] [0.0615]

F stat PM 2.5 (weak inst.) 207.3 45.1
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165
Observations 2,618,765 2,618,765

Note: This table reports IV estimates of equation (1). Column (1) uses alti-
tude wind speed (layers 12, 16, and 20) as instruments, while column (2) uses
inverse planetary boundary layer height (IPBLH) and thermal inversion (TI).
The dependent variable is the log of respiratory ER visits. Alert, Pre-emergency
and Emergency are dummy variables indicating if the government issues an alert,
pre-emergency, or emergency warning for air pollution. All specifications include
hospital-year, day-month-year and age group fixed effects, controls for enviro-
mental alerts, and flexible controls for temperatures (maximum and minimum),
precipitation, and surface wind speed. The test for weak instruments uses the F
statistics and p-values from Sanderson and Windmeijer (2016). Standard errors,
clustered by hospital, are reported in brackets. Significance levels are indicated
by ∗ < .1, ** < .05, *** < .01.
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Table 13: Effect of PM 2.5 on (log) ER visits by age. Different instruments

< 1 1-4 5-14 15-64 65 +

Panel A: Wind

PM 2.5 (µg / m3) 0.0036*** 0.0041*** 0.0041*** 0.0034*** 0.0041***
[0.0008] [0.0007] [0.0006] [0.0005] [0.0006]

F stat PM 2.5 (weak inst.) 206.2 206.2 206.2 206.2 206.2
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.2 9.0 8.2 17.3 3.0
Observations 523,637 523,637 523,637 523,637 523,637

Panel B: IPBLH + TI

PM 2.5 (µg / m3) 0.0025 0.0051*** 0.0040** 0.0037** 0.0008
[0.0022] [0.0018] [0.0018] [0.0017] [0.0017]

F stat PM 2.5 (weak inst.) 44.9 44.9 44.9 44.9 44.9
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.2 9.0 8.2 17.3 3.0
Observations 523,637 523,637 523,637 523,637 523,637

Note: This table reports IV estimates of equation (1) by age group. Panel (A) uses altitude wind
speed (layers 12, 16, and 20) as instruments, while panel (B) uses inverse planetary boundary layer
height (IPBLH) and thermal inversion (TI). The dependent variable is the log of respiratory ER visits.
All specifications include hospital-year, day-month-year and age group fixed effects, controls for envi-
ronmental alerts, and flexible controls for temperatures (maximum and minimum), precipitation, and
surface wind speed. The test for weak instruments uses the F statistics and p-values from Sanderson
and Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Significance
levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 14: IV estimates of the effect of PM 2.5 on respiratory ER rates at municipality level.
Weighted regression.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.488* 0.544** 4.485*** 5.272***
[0.277] [0.245] [1.084] [1.144]

Alert -7.982 -48.178**
[18.633] [23.810]

Pre-emergency -28.774 -115.899***
[28.894] [40.819]

Emergency -67.142 -265.304***
[66.312] [72.967]

F stat PM 2.5 (weak inst.) 29.5 24.1
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 2,650 2,650 2,650 2,650
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the respiratory ER visit rate per 100,000 residents in the relevant age group. Alert, Pre-emergency
and Emergency are dummy variables indicating if the government issues an alert, pre-emergency, or
emergency warning for air pollution. The instruments for PM2.5 are wind speed at three different
pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications
include municipality, day-month-year and age group fixed effects, and flexible controls for temperatures
(maximum and minimum), precipitation, and surface wind speed. Estimates are weighted by the number
of residents in the relevant age group. The test for weak instruments uses the F statistics and p-values
from Sanderson and Windmeijer (2016). Standard errors, clustered by county, are reported in brackets.
Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 15: IV estimates of the effect of PM 2.5 on respiratory ER rates at municipality level,
by age group. Weighted regression.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

PM 2.5, same day (µg / m3) 35.1** 26.1*** 10.0*** 2.4*** 5.6***
[14.6] [7.1] [3.2] [0.7] [1.2]

Alert -367.1* -250.1*** -112.5** -20.0 -28.0
[188.0] [90.4] [55.3] [16.7] [23.5]

Pre-emergency -576.2 -512.0*** -234.4** -58.0** -108.0**
[346.3] [168.8] [99.5] [24.3] [40.9]

Emergency -454.7 -1275.7*** -516.7*** -147.0*** -256.9***
[693.8] [350.6] [171.6] [46.3] [75.5]

Mean DV 6,312 4,118 1,512 606 700
Observations 68,761 68,761 68,761 68,761 68,761

Note: This table reports IV estimates of equation (1) by age group at the municipality level. The dependent
variable is the respiratory ER visit rate per million of residents in the relevant age group. Alert, Pre-emergency
and Emergency are dummy variables indicating if the government issues an alert, pre-emergency, or emergency
warning for air pollution. The instruments for PM2.5 are wind speed at three different pressure levels: 725
hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include municipality-year and
day-month-year fixed effects, and flexible controls for temperatures (maximum and minimum), precipitation, and
surface wind speed. Estimates are weighted by the number of residents in the relevant age group. The test for
weak instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors,
clustered by municipality, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, ***
< .01.
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Table 16: IV estimates of the effect of PM 2.5 on rate of respiratory ER visits, by age group.
Robustness using different transformations of the dependent variable.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Dependent variable: Logarithmic transformation

PM 2.5 (µg / m3) 0.004*** 0.004*** 0.004*** 0.003*** 0.004***
[0.001] [0.001] [0.001] [0.001] [0.001]

F stat PM 2.5 (weak inst.) 206.2 206.2 206.2 206.2 206.2
Effect relative to mean, percent 0.36 0.41 0.41 0.34 0.41
Observations 523,637 523,637 523,637 523,637 523,637

Dependent variable: Inverse hyperbolic sine transformation

PM 2.5 (µg / m3) 0.005*** 0.005*** 0.005*** 0.004*** 0.005***
[0.001] [0.001] [0.001] [0.001] [0.001]

F stat PM 2.5 (weak inst.) 206.2 206.2 206.2 206.2 206.2
Effect relative to mean, percent 0.56 0.51 0.51 0.39 0.62
Observations 523,637 523,637 523,637 523,637 523,637

Dependent variable: Poisson pseudo maximum likelihood regression

PM 2.5 (µg / m3) 0.004*** 0.004*** 0.004*** 0.004*** 0.006***
[0.001] [0.001] [0.001] [0.000] [0.001]

F stat PM 2.5 (weak inst.) 206.2 206.2 206.2 206.2 206.2
Effect relative to mean, percent 0.41 0.39 0.42 0.36 0.63
Observations 507,918 507,922 507,922 511,086 510,768

Dependent variable: Ratio ER visits to population

PM 2.5 (µg / m3) 27.056* 29.612*** 10.086*** 3.083*** 7.369***
[14.706] [5.831] [3.200] [0.804] [1.052]

F stat PM 2.5 (weak inst.) 165.1 169.9 153.4 157.8 162.6
Effect relative to mean, percent 0.40 0.59 0.53 0.46 0.96
Observations 523,637 523,637 523,637 523,637 523,637

Note: This table reports IV estimates of equation (1) by age group. The first panel (baseline model)
shows the results for a logarithm transformation (log(1+ERvisits)), the second panel for a inverse
hyperbolic sine transformation (arcsinh(ERvisits)), the third panel for a Poisson pseudo maximum
likelihood regression, and the fourth panel for a ratio of ER visits to population where population
is computed using the population living in census blocks within 5 km of the hospital.
All specifications include hospital-month and day-month-year fixed effects, control for environmental
alerts, and flexible controls for temperatures (maximum and minimum), precipitation, and surface
wind speed. The test for weak instruments uses the F statistics and p-values from Sanderson and
Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Significance
levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 17: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits using
two lags of PM 2.5.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.0001* 0.0001 0.0045*** 0.0045***
[0.0001] [0.0001] [0.0007] [0.0007]

PM 2.5, 1-day lag (µg / m3) 0.0001 0.0001 -0.0014 -0.0013
[0.0001] [0.0001] [0.0010] [0.0010]

PM 2.5, 2-day lag (µg / m3) 0.0001 0.0001 -0.0006 -0.0006
[0.0001] [0.0001] [0.0008] [0.0008]

Alert 0.0132** -0.0102
[0.0056] [0.0086]

Pre-emergency 0.0113 -0.0352**
[0.0084] [0.0159]

Emergency 0.0218 -0.0942***
[0.0180] [0.0335]

F stat PM 2.5 (weak inst.) 114.3 111.8
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,168,715 2,168,715 2,168,715 2,168,715

Note: This table reports OLS and IV estimates of equation (1) that include two lags of PM2.5. The
dependent variable is the logarithm of respiratory ER visits. Alert, Pre-emergency and Emergency
are dummy variables indicating if the government issues an alert, pre-emergency, or emergency warn-
ing for air pollution. The instruments for PM2.5 are wind speed at three different pressure levels:
725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). Lagged PM2.5 are isntrumented
using lagged instruments. All specifications include hospital, day-month-year and age group fixed
effects, and flexible controls for temperatures (maximum and minimum), precipitation, and surface
wind speed. The test for weak instruments uses the F statistics and p-values from Sanderson and
Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Significance
levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table 18: OLS and IV estimates of the effect of PM 2.5 on (log) respiratory ER visits using
3-day average PM 2.5.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5 3-day avg. (µg / m3) 0.0003*** 0.0002** 0.0024*** 0.0025***
[0.0001] [0.0001] [0.0004] [0.0004]

Alert 0.0187*** -0.0028
[0.0050] [0.0072]

Pre-emergency 0.0133* -0.0338***
[0.0076] [0.0125]

Emergency 0.0319** -0.0735***
[0.0142] [0.0249]

F stat PM 2.5 (weak inst.) 183.8 164.6
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 8.165 8.165 8.165 8.165
Observations 2,568,250 2,568,250 2,568,250 2,568,250

Note: This table reports OLS and IV estimates of equation (1) using 3-day average PM2.5. The
dependent variable is the logarithm of respiratory ER visits. Alert, Pre-emergency and Emergency
are dummy variables indicating if the government issues an alert, pre-emergency, or emergency
warning for air pollution. The instruments for 3-day average PM2.5 are 3-day average wind
speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer
20). All specifications include hospital, day-month-year and age group fixed effects, and flexible
controls for temperatures (maximum and minimum), precipitation, and surface wind speed. The
test for weak instruments uses the F statistics and p-values from Sanderson and Windmeijer
(2016). Standard errors, clustered by hospital, are reported in brackets. Significance levels are
indicated by ∗ < .1, ** < .05, *** < .01.
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A Appendix: Online Appendix not for publication
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Table A.1: Effect of PM 2.5 on (log) respiratory ER visits at municipality level.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 0.000 0.000 0.004*** 0.004***
[0.000] [0.000] [0.001] [0.001]

Alert 0.022* -0.023
[0.013] [0.020]

Pre-emergency 0.004 -0.092***
[0.014] [0.033]

Emergency 0.006 -0.208***
[0.020] [0.068]

F stat PM 2.5 (weak inst.) 29.2 23.8
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 32.078 32.078 32.078 32.078
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the logarithm of respiratory ER visits. Alert, Pre-emergency and Emergency are dummy variables
indicating if the government issues an alert, pre-emergency, or emergency warning for air pollution. The
instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa (layer
16), and 450 hPa (layer 20). All specifications include municipality and day-month-year fixed effects, and
flexible controls for temperatures (maximum and minimum), precipitation, and surface wind speed. The
test for weak instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016).
Standard errors, clustered by municipality, are reported in brackets. Significance levels are indicated by
∗ < .1, ** < .05, *** < .01.
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Table A.2: Effect of PM 2.5 on (log) respiratory ER visits at municipality level. Weighted
regression.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) -0.000 -0.000 0.002*** 0.003***
[0.000] [0.000] [0.001] [0.001]

Alert 0.013 -0.013
[0.014] [0.017]

Pre-emergency -0.009 -0.064***
[0.014] [0.021]

Emergency -0.046 -0.171***
[0.029] [0.034]

F stat PM 2.5 (weak inst.) 29.5 24.1
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 32.078 32.078 32.078 32.078
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the logarithm of respiratory ER visits. Alert, Pre-emergency and Emergency are dummy variables
indicating if the government issues an alert, pre-emergency, or emergency warning for air pollution. The
instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12), 550 hPa
(layer 16), and 450 hPa (layer 20). All specifications include municipality and day-month-year fixed
effects, and flexible controls for temperatures (maximum and minimum), precipitation, and surface wind
speed. Estimates are weighted by the number of residents in the relevant age group. The test for weak
instruments uses the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors,
clustered by municipality, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05,
*** < .01.
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Table A.3: Effect of PM 2.5 on respiratory ER rates at municipality level.

OLS IV/2SLS

(1) (2) (3) (4)

PM 2.5, same day (µg / m3) 1.444** 1.365** 16.222*** 18.455***
[0.599] [0.568] [4.542] [5.112]

Alert 30.949 -144.946**
[62.529] [65.160]

Pre-emergency 6.780 -367.850***
[77.575] [126.346]

Emergency 105.056 -730.464**
[107.107] [279.533]

F stat PM 2.5 (weak inst.) 29.2 23.8
p-value PM 2.5 (weak inst.) 0.000 0.000
Mean DV 2,650 2,650 2,650 2,650
Observations 345,820 345,820 345,820 345,820

Note: This table reports IV estimates of equation (1) at the municipality level. The dependent variable
is the respiratory ER visit rate per million of residents in the relevant age group. Alert, Pre-emergency
and Emergency are dummy variables indicating if the government issues an alert, pre-emergency, or
emergency warning for air pollution. The instruments for PM2.5 are wind speed at three different
pressure levels: 725 hPa (layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include
municipality and day-month-year fixed effects, and flexible controls for temperatures (maximum and
minimum), precipitation, and surface wind speed. The test for weak instruments uses the F statistics
and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by hospital, are reported
in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.4: Effect of PM 2.5 on (log) respiratory ER visits. Robustness using a balanced
sample of monitors.

Full sample Balanced sample

(1) (2) (3) (4)

PM 2.5 (µg / m3) 0.0035*** 0.0038*** 0.0038*** 0.0042***
[0.0005] [0.0004] [0.0005] [0.0004]

Alert -0.0129 -0.0120 -0.0261** -0.0236**
[0.0099] [0.0084] [0.0108] [0.0092]

Pre-emergency -0.0470*** -0.0545*** -0.0704*** -0.0761***
[0.0161] [0.0136] [0.0186] [0.0160]

Emergency -0.1252*** -0.1440*** -0.1695*** -0.1883***
[0.0343] [0.0295] [0.0384] [0.0331]

Hospital FE Yes No Yes No

Hospital-Year FE No Yes No Yes

F stat PM 2.5 (weak inst.) 226.0 207.3 165.4 162.5
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000
Mean DV 8.165 8.165 8.245 8.245
Observations 2,618,765 2,618,765 2,477,515 2,477,515

Note: This table reports IV estimates of equation (1) for the full sample and a balanced sample of
monitors, i.e. monitors that reported PM 2.5 during the entire 2013-2019 period.
The dependent variable is the logarithm of respiratory ER visits in the corresponding age group.
Alert, Pre-emergency and Emergency are dummy variables indicating if the government issues an
alert, pre-emergency, or emergency warning for air pollution.
The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12), 550
hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-month and day-month-
year fixed effects, and flexible controls for temperatures (maximum and minimum), precipitation,
and surface wind speed. The test for weak instruments uses the F statistics and p-values from
Sanderson and Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets.
Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.5: Effect of PM 2.5 on (log) respiratory ER visits, by age group. Robustness using
a balanced sample of monitors.

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Full sample

PM 2.5 (µg / m3) 0.0036*** 0.0041*** 0.0041*** 0.0034*** 0.0041***
[0.0008] [0.0007] [0.0006] [0.0005] [0.0006]

F stat PM 2.5 (weak inst.) 206.2 206.2 206.2 206.2 206.2
Mean DV 3.236 9.043 8.248 17.335 2.962
Observations 523,637 523,637 523,637 523,637 523,637

Balanced sample of monitors

PM 2.5 (µg / m3) 0.0045*** 0.0049*** 0.0037*** 0.0033*** 0.0045***
[0.0008] [0.0007] [0.0006] [0.0005] [0.0007]

F stat PM 2.5 (weak inst.) 161.6 161.6 161.6 161.6 161.6
Mean DV 3.266 9.119 8.318 17.516 3.007
Observations 495,391 495,391 495,391 495,391 495,391

Note: This table reports IV estimates of equation (1) by age group using a balanced sample of
monitors, i.e. monitors that reported PM 2.5 during the entire 2013-2019 period.
The dependent variable is the logarithm of respiratory ER visits in the corresponding age group.
The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa (layer 12), 550
hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-month and day-month-
year fixed effects, controls for enviromental alerts, and flexible controls for temperatures (maximum
and minimum), precipitation, and surface wind speed. The test for weak instruments uses the
F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered by
hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.6: Effect of PM 2.5 on log of respiratory ER visits. Robustness using different
distances from pollution monitors to hospitals

(1) (2) (3) (4)
3 km 5 km 10 km 20 km

PM 2.5 (µg / m3) 0.0036*** 0.0037*** 0.0038*** 0.0035***
[0.0005] [0.0004] [0.0004] [0.0003]

Alert -0.0143 -0.0128 -0.0120 -0.0070
[0.0118] [0.0093] [0.0084] [0.0074]

Pre-emergency -0.0546*** -0.0507*** -0.0545*** -0.0425***
[0.0184] [0.0148] [0.0136] [0.0128]

Emergency -0.1334*** -0.1365*** -0.1440*** -0.1205***
[0.0366] [0.0319] [0.0295] [0.0272]

Hospital-Year FE Yes Yes Yes Yes

F stat PM 2.5 (weak inst.) 93.2 155.8 207.3 246.1
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000
Mean DV 7.937 8.122 8.165 7.985
Observations 1,323,045 2,117,125 2,618,765 2,888,895

Note: This table reports IV estimates of equation (1) for different samples. Each column reports a sample
using a hospitals within some distance to a pollution monitor (3, 5, 10,, or 20 km). The dependent variable is
the logarithm of respiratory ER visits in the corresponding age group. Alert, Pre-emergency and Emergency
are dummy variables indicating if the government issues an alert, pre-emergency, or emergency warning
for air pollution. The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa
(layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-month and day-
month-year fixed effects, and flexible controls for temperatures (maximum and minimum), precipitation, and
surface wind speed. The test for weak instruments uses the F statistics and p-values from Sanderson and
Windmeijer (2016). Standard errors, clustered by hospital, are reported in brackets. Significance levels are
indicated by ∗ < .1, ** < .05, *** < .01.
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Table A.7: Effect of PM 2.5 on log of respiratory ER visits, by age group. Robustness using
different distances from pollution monitors to hospitals

(1) (2) (3) (4) (5)
< 1 1-4 5-14 15-64 65 +

Distance pollution monitor to hospital: 3 km

PM 2.5 (µg / m3) 0.004*** 0.004*** 0.003*** 0.003*** 0.004***
[0.001] [0.001] [0.001] [0.001] [0.001]

F stat PM 2.5 (weak inst.) 92.2 92.2 92.2 92.2 92.2
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.4 9.2 8.0 16.0 3.0
Observations 264,502 264,502 264,502 264,502 264,502

Distance pollution monitor to hospital: 5 km

PM 2.5 (µg / m3) 0.004*** 0.004*** 0.004*** 0.003*** 0.004***
[0.001] [0.001] [0.001] [0.001] [0.001]

F stat PM 2.5 (weak inst.) 154.8 154.8 154.8 154.8 154.8
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.4 9.1 8.2 16.9 3.0
Observations 423,310 423,310 423,310 423,310 423,310

Distance pollution monitor to hospital: 10 km (main model)

PM 2.5 (µg / m3) 0.004*** 0.004*** 0.004*** 0.003*** 0.004***
[0.001] [0.001] [0.001] [0.001] [0.001]

F stat PM 2.5 (weak inst.) 206.2 206.2 206.2 206.2 206.2
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.2 9.0 8.2 17.3 3.0
Observations 523,637 523,637 523,637 523,637 523,637

Distance pollution monitor to hospital: 20 km

PM 2.5 (µg / m3) 0.003*** 0.004*** 0.004*** 0.003*** 0.004***
[0.001] [0.001] [0.001] [0.000] [0.001]

F stat PM 2.5 (weak inst.) 244.9 244.9 244.9 244.9 244.9
p-value PM 2.5 (weak inst.) 0.000 0.000 0.000 0.000 0.000
Mean DV 3.1 8.8 8.1 17.0 2.9
Observations 577,649 577,649 577,649 577,649 577,649

Note: This table reports IV estimates of equation (1) by age group for different samples. Each
column reports a sample using a hospitals within some distance to a pollution momitor (5, 10, 15,
or 20 km). The dependent variable is the logarithm of respiratory ER visits in the corresponding
age group. The instruments for PM2.5 are wind speed at three different pressure levels: 725 hPa
(layer 12), 550 hPa (layer 16), and 450 hPa (layer 20). All specifications include hospital-month and
day-month-year fixed effects, controls for enviromental alerts, and flexible controls for temperatures
(maximum and minimum), precipitation, and surface wind speed. The test for weak instruments
uses the F statistics and p-values from Sanderson and Windmeijer (2016). Standard errors, clustered
by hospital, are reported in brackets. Significance levels are indicated by ∗ < .1, ** < .05, *** < .01.
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